More Bayes, Law of Total Probability, and Independence

Practice problems at the end

```
df <- function(n) {
```

}

S <- sample(c("setosa","versicolor", "virginica"), n, replace=TRUE)</pre>

```
pc <- .4*(S=="setosa") + .5*(S=="versicolor") + .2</pre>
```

```
C <- c("purple","pink")[rbinom(n,1,pc)+1]</pre>
```

```
data.frame(S = S, C = C)
```

Color	Setosa	Versicolor	Virginica	Row Total
pink				
Cell prob	?	?	?	?
Row prob	?	?	?	
Col prob	?	?	?	
purple				
Cell prob	?	?	?	?
Row prob	?	?	?	
Col prob	?	?	?	
Column Total	?	?	?	?

```
df <- function(n) {
```

}

```
S <- sample(c("setosa","versicolor", "virginica"), n, replace=TRUE)</pre>
```

```
pc <- .4*(S=="setosa") + .5*(S=="versicolor") + .2</pre>
```

```
C <- c("purple","pink")[rbinom(n,1,pc)+1]</pre>
```

```
data.frame(S = S, C = C)
```

		Species		
Color	Setosa	Versicolor	Virginica	Row Total
pink				
Cell prob				
Row prob				
Col prob				
purple				
Cell prob				
Row prob				
Col prob				
Column Total				

Compare to simulation results

df1 <- df(100000)

gmodels::CrossTable(df1\$C,df1\$S)

From last time ...

pet	blue	green	red	Row Total
cat				
Cell prob	?	?	?	0.3
Row prob	0.2	0.5	?	
Col prob	?	?	?	
dog				
Cell prob	?	?	?	?
Row prob	0.3	?	0.6	
Col prob	?	?	?	
Column Total	?	?	?	?

Question: Is there enough information to fill in the rest of the table?

pet	blue	green	red	Row Total
cat				
Cell prob	?	?	?	0.3
Row prob	0.2	0.5	0.3	
Col prob	?	?	?	
dog				
Cell prob	?	?	?	0.7
Row prob	0.3	0.1	0.6	
Col prob	?	?	?	
Column Total	?	?	?	?

pet		blue	green	red	Row Total
cat					
	Cell prob	0.3 imes 0.2	0.3 imes 0.5	0.3 imes 0.3	0.3
	Row prob	0.2 -	0.5 1	0.3 -	
	Col prob	?	?	?	
dog					
	Cell prob	?	?	?	0.7
	Row prob	0.3	0.1	0.6	
	Col prob	?	?	?	
Colu	.mn Total	?	?	?	?

pet		blue	green	red	Row Total
cat					
	Cell prob	0.3 imes 0.2	0.3 imes 0.5	0.3 imes 0.3	0.3
	Row prob	0.2	0.5	0.3	
	Col prob	?	?	?	
dog					
	Cell prob	0.7 imes 0.3	0.7 imes 0.1	0.7 imes 0.6	0.7
	Row prob	0.3	0.1	0.6	
	Col prob	?	?	?	
Colu	.mn Total	?	?	?	?

pet	blue	green	red	Row Total
cat				
Cell prob	0.3 imes 0.2	0.3 imes 0.5	0.3 imes 0.3	0.3
Row prob	0.2	0.5	0.3	
Col prob	?	?	?	
dog				
Cell prob	0.7 imes 0.3	0.7 imes 0.1	0.7 imes 0.6	0.7
Row prob	0.3	0.1	0.6	
Col prob	?	?	?	
Column Total	$0.3 \times 0.2 + 0.7 \times 0.3$	$0.3\times0.5+0.7\times0.1$	$0.3\times0.3+0.7\times0.6$	1

pet	blue	green	red	Row Total
cat				
Cell prob	0.3 imes 0.2	0.3 imes 0.5	0.3 imes 0.3	0.3
Row prob	0.2	0.5	0.3	
Col prob	$rac{0.3 imes 0.2}{0.3 imes 0.2 + 0.7 imes 0.3}$	$\tfrac{0.3 \times 0.5}{0.3 \times 0.5 + 0.7 \times 0.1}$	$\frac{0.3 \times 0.3}{0.3 \times 0.3 + 0.7 \times 0.6}$	
dog				
Cell prob	0.7 imes 0.3	0.7 imes 0.1	0.7 imes 0.6	0.7
Row prob	0.3	0.1	0.6	
Col prob	$\frac{0.7 \times 0.3}{0.3 \times 0.2 + 0.7 \times 0.3}$	$\frac{0.7 \times 0.1}{0.3 \times 0.5 + 0.7 \times 0.1}$	$\frac{0.7 \times 0.6}{0.3 \times 0.3 + 0.7 \times 0.6}$	
Column Total	$0.3 \times 0.2 + 0.7 \times 0.3$	$0.3 \times 0.5 + 0.7 \times 0.1$	$0.3\times0.3+0.7\times0.6$	1

Let's repeat the calculations, but this time let's use symbolic placeholders

This is the information we started with

pet	blue	green	red	Row Total
cat				
Cell prob	P(aat)P(blue aat)	P(ozt)P(green ozt)	P(oat)P(red cat)	P(cat)
Row prob	P(blue cat)	P(blue cat)	P(red cat)	
Col prob	<u>P(cst)P(bluojcat)</u> P(bluo)	P(cat)P(grocolcat) P(grocol	$\frac{P(cat)P(rod cat)}{P(rod)}$	
dog				
Cell prob	$P(\log)P(blue \log)$	$P(\log)P(\operatorname{green} \log)$	P(dog)P(red dog)	P(dog)
Row prob	P(blue dog)	P(green dog)	$P(\mathrm{red} \mathrm{dog})$	
Col prob	P(dog)P(blue(dog) P(blue)	P(dog)P(green dog) P(green)	P(dog)P(redidog P(red)	
	P(blue) =	P(green) =	$P(\mathrm{red}) =$	
Column Total	P(eat)P(blue eat)+	$P(\operatorname{cat})P(\operatorname{green} \operatorname{cat}) +$	$P(\operatorname{cat})P(\operatorname{red} \operatorname{cat})+$	1
	E (dog) E (bhue dog)	P(dog)P(green dog)	F(dog)F(red dog)	

pet	blue	green	red	Row Total
cat Cell prob	P(cat)P(blue cat)	P(cat)P(green cat)	$P(\mathrm{cat})P(\mathrm{red} \mathrm{cat})$	P(cat)
Row prob	P(blue cat)	P(blue cat)	$P(\mathrm{red} \mathrm{cat})$	
Col prob	P(cat)P(blub[cat) P(blub]	P (cali) P (grood cali) P (grood)	P(cat) P(cod cat) P(cod)	
dog Cell prob	$P(\log)P(blue \log)$	P(dog)P(green dog)	$\mathcal{P}(dog)\mathcal{P}(red dog)$	$P(\mathrm{dog})$
Row prob	P(blue dog)	P(green dog)	$P(\mathrm{red} \mathrm{dog})$	
Col prob	P(dog)P(blueidog) P(blue)	P(dog)P(green dog) P(green)	P(dog)P(red)dog P(red)	
Column Total	P(blue) = P(cat)P(blue cat) + P(dog)P(blue dog)	P(green) = P(cat)P(green cat)+ P(dog)P(green dog)	P(red) = P(cat)P(red cat) + P(deg)P(red deg)	1

pet	blue	green	red	Row Total
cat Cell prob Row prob	P(cat)P(blue cat) P(blue cat)	P(cat)P(green cat) P(blue cat)	P(cat)P(red cat) P(red cat)	P(cat)
Col prob	P(cat)P(blucicat) P(cluc)	P(ost)P(groon ost) P(groon)	$\frac{P(cat)P(rod cat)}{P(rod)}$	
dog Cell prob	$P(\mathrm{dog})P(\mathrm{blue} \mathrm{dog})$	$P(\mathrm{dog})P(\mathrm{green} \mathrm{dog})$	$P(\mathrm{dog})P(\mathrm{red} \mathrm{dog})$	$P(\mathrm{dog})$
Row prob	P(blue dog)	$P(ext{green} ext{dog})$	$P(\mathrm{red} \mathrm{dog})$	
Col prob	P(dog)P(blueidog) P(blueidog)	P(dog)P(green]dog) P(green)	$\frac{P(dog)P(red dog}{P(red)}$	
Column Total	P(dog)P(blue cat)+ P(dog)P(blue cag)	P(green) == P(oat)P(green oat)= P(dog)P(green dog)	P(red) == P(cet)P(rod[cet)= P(dog)P(red[dog)	1

pet	blue	green	red	Row Total
cat				
Cell prob	P(cat)P(blue cat)	P(cat)P(green cat)	P(cat)P(red cat)	P(cat)
Row prob	P(blue cat)	P(blue cat)	$P(\mathrm{red} \mathrm{cat})$	
Col prob	$\frac{P(cat)P(blac cat)}{P(oluc)}$	P(cat)P(groon cat) P(groon)	$rac{P(cat)P(rod cat)}{P(red)}$	
dog				
Cell prob	P(dog)P(blue dog)	P(dog)P(green dog)	$P(\mathrm{dog})P(\mathrm{red} \mathrm{dog})$	P(dog)
Row prob	$P(\mathrm{blue} \mathrm{dog})$	$P(ext{green} ext{dog})$	$P(\mathrm{red} \mathrm{dog})$	
Col prob	$\frac{P(deg)P(blue)deg)}{P(blue)}$	P(dog)P(green dog) F(green)	<u>P(dog)P(red dog</u> P(red)	
	P(blue) =	P(green) =	P(red) =	
Column Total	P(cat)P(blue cat)+	P(cat)P(green cat)+	P(cat)P(red cat)+	1
	$P(\mathrm{dog})P(\mathrm{blue} \mathrm{dog})$	P(dog)P(green dog)	$P(\mathrm{dog})P(\mathrm{red} \mathrm{dog})$	

pet	blue	green	red	Row Total
cat				
Cell prob	P(cat)P(blue cat)	P(cat)P(green cat)	P(cat)P(red cat)	P(cat)
Row prob	P(blue cat)	$P(\mathrm{blue} \mathrm{cat})$	$P(\mathrm{red} \mathrm{cat})$	
Col prob	$\frac{P(\text{cat})P(\text{blue} \text{cat})}{P(\text{blue})}$	P(ost)P(green est) P(green)	$\frac{P(cat)P(red cat)}{P(red)}$	
dog				
Cell prob	P(dog)P(blue dog)	P(dog)P(green dog)	$P(\mathrm{dog})P(\mathrm{red} \mathrm{dog})$	P(dog)
Row prob	P(blue dog)	$P(ext{green} ext{dog})$	$P(\mathrm{red} \mathrm{dog})$	
Col prob	$\frac{P(\text{dog})P(\text{blue} \text{dog})}{P(\text{blue})}$	P (dog) P (green dog) P (green)	P(dog)P(red dog)P(red)	
	P(blue) =	P(green) =	P(red) =	
Column Total	P(cat)P(blue cat)+	P(cat)P(green cat)+	P(cat)P(red cat)+	1
	P(dog)P(blue dog)	P(dog)P(green dog)	P(dog)P(red dog)	

pet	blue	green	red	Row Total
cat				
Cell prob	P(cat)P(blue cat)	P(cat)P(green cat)	P(cat)P(red cat)	P(cat)
Row prob	P(blue cat)	$P(\mathrm{blue} \mathrm{cat})$	$P(\mathrm{red} \mathrm{cat})$	
Col prob	$\frac{P(\text{cat})P(\text{blue} \text{cat})}{P(\text{blue})}$	$\frac{P(\text{cat})P(\text{green} \text{cat})}{P(\text{green})}$	$\frac{P(ost)P(red ost)}{P(red)}$	
dog				
Cell prob	P(dog)P(blue dog)	P(dog)P(green dog)	$P(\mathrm{dog})P(\mathrm{red} \mathrm{dog})$	$P(\mathrm{dog})$
Row prob	$P(\mathrm{blue} \mathrm{dog})$	P(green dog)	$P(\mathrm{red} \mathrm{dog})$	
Col prob	$\frac{P(\text{dog})P(\text{blue} \text{dog})}{P(\text{blue})}$	$\frac{P(\text{dog})P(\text{green} \text{dog})}{P(\text{green})}$	<u>P(dog)</u> P(red dog P(red)	
	P(blue) =	P(green) =	P(red) =	
Column Total	P(cat)P(blue cat)+	P(cat)P(green cat)+	P(cat)P(red cat)+	1
	P(dog)P(blue dog)	P(dog)P(green dog)	$P(\mathrm{dog})P(\mathrm{red} \mathrm{dog})$	

pet	blue	green	red	Row Total
cat Call much	D(aat) D(black)	D(act) D(concordect)	D(aat) D(aat)	D(aat)
Cell prob	P(cat)P(blue cat)	P(cat)P(green cat)	P(cat)P(red cat)	P(cat)
Row prob	P(blue cat)	$P(\mathrm{blue} \mathrm{cat})$	$P(\mathrm{red} \mathrm{cat})$	
Col prob	$\frac{P(\text{cat})P(\text{blue} \text{cat})}{P(\text{blue})}$	$\frac{P(\text{cat})P(\text{green} \text{cat})}{P(\text{green})}$	$\frac{P(\mathrm{cat})P(\mathrm{red} \mathrm{cat})}{P(\mathrm{red})}$	
dog				
Cell prob	P(dog)P(blue dog)	P(dog)P(green dog)	P(dog)P(red dog)	P(dog)
Row prob	P(blue dog)	P(green dog)	$P(\mathrm{red} \mathrm{dog})$	
Col prob	$\frac{P(\text{dog})P(\text{blue} \text{dog})}{P(\text{blue})}$	$\frac{P(\text{dog})P(\text{green} \text{dog})}{P(\text{green})}$	$\frac{P(\text{dog})P(\text{red} \text{dog})}{P(\text{red})}$	
	P(blue) =	P(green) =	P(red) =	
Column Total	P(cat)P(blue cat)+	P(cat)P(green cat)+	P(cat)P(red cat)+	1
	P(dog)P(blue dog)	P(dog)P(green dog)	$P(\mathrm{dog})P(\mathrm{red} \mathrm{dog})$	

pet		blue			
cat	Cell prob	P(cat)P(blue cat) = I	P(cat & blue) Proba	bility multiplic	ation
	Row prob	P(blue cat)			
	Col prob	$\frac{P(\text{cat})P(\text{blue} \text{cat})}{P(\text{blue})} = I$	P(cat blue) Bayes	Rule	

pet	blue	green	red	Row Total
cat				
Cell prob	P(cat)P(blue cat)	P(cat)P(green cat)	P(cat)P(red cat)	P(cat)
Row prob	P(blue cat)	$P(\mathrm{blue} \mathrm{cat})$	$P(\mathrm{red} \mathrm{cat})$	
Col prob	$\frac{P(\text{cat})P(\text{blue} \text{cat})}{P(\text{blue})}$	$\frac{P(\text{cat})P(\text{green} \text{cat})}{P(\text{green})}$	$\frac{P(\text{cat})P(\text{red} \text{cat})}{P(\text{red})}$	
dog				
Cell prob	P(dog)P(blue dog)	P(dog)P(green dog)	$P(\mathrm{dog})P(\mathrm{red} \mathrm{dog})$	$P(\mathrm{dog})$
Row prob	P(blue dog)	P(green dog)	$P(\mathrm{red} \mathrm{dog})$	
Col prob	$\frac{P(\text{dog})P(\text{blue} \text{dog})}{P(\text{blue})}$	$\frac{P(\text{dog})P(\text{green} \text{dog})}{P(\text{green})}$	$\frac{P(\text{dog})P(\text{red} \text{dog}}{P(\text{red})}$	
	P(blue) =	P(green) =	P(red) =	
Column Total	P(cat)P(blue cat)+	P(cat)P(green cat)+	P(cat)P(red cat)+	1
	P(dog)P(blue dog)	P(dog)P(green dog)	P(dog)P(red dog)	

	B_1	B_2	B_3	Row Total
A_1				
Cell prob	$P(A_1)P(B_1 A_1)$	$P(A_1)P(B_2 A_1)$	$P(A_1)P(B_3 A_1)$	$P(A_1)$
Row prob	$P(B_1 A_1)$	$P(B_1 A_1)$	$P(B_3 A_1)$	
Col prob	$\frac{P(A_1)P(B_1 A_1)}{P(B_1)}$	$\frac{P(A_1)P(B_2 A_1)}{P(B_2)}$	$\frac{P(A_1)P(B_3 A_1)}{P(B_3)}$	
A_2				
Cell prob	$P(A_2)P(B_1 A_2)$	$P(A_2)P(B_2 A_2)$	$P(A_2)P(B_3 A_2)$	$P(A_2)$
Row prob	$P(B_1 A_2)$	$P(B_2 A_2)$	$P(B_3 A_2)$	
Col prob	$\frac{P(A_2)P(B_1 A_2)}{P(B_1)}$	$\frac{P(A_2)P(B_2 A_2)}{P(B_2)}$	$\frac{P(A_2)P(B_3 A_2)}{P(B_3)}$	
	$P(B_1) =$	$P(B_2) =$	$P(B_3) =$	
Column Total	$P(A_1)P(B_1 A_1) +$	$P(A_1)P(B_2 A_1) +$	$P(A_1)P(B_3 A_1) +$	1
	$P(A_2)P(B_1 A_2)$	$P(A_2)P(B_2 A_2)$	$P(A_2)P(B_3 A_2)$	

		B_1	B_2	B_3		B_c	Row Total
A_1							
	Cell prob	$P(A_1)P(B_1 A_1)$	$P(A_1)P(B_2 A_1)$	$P(A_1)P(B_3 A_1)$		$P(A_1)P(B_c A_1)$	$P(A_1)$
	Row prob	$P(B_1 A_1)$	$P(B_1 A_1)$	$P(B_3 A_1)$		$P(B_c A_1)$	
	Col prob	$\frac{P(A_1)P(B_1 A_1)}{P(B_1)}$	$\frac{P(A_1)P(B_2 A_1)}{P(B_2)}$	$\frac{P(A_1)P(B_3 A_1)}{P(B_3)}$		$\frac{P(A_1)P(B_c A_1)}{P(B_c)}$	
A_2							
	Cell prob	$P(A_2)P(B_1 A_2)$	$P(A_2)P(B_2 A_2)$	$P(A_2)P(B_3 A_2)$	• • •	$P(A_2)P(B_c A_2)$	$P(A_2)$
	Row prob	$P(B_1 A_2)$	$P(B_2 A_2)$	$P(B_3 A_2)$		$P(B_c A_2)$	
	Col prob	$\frac{P(A_2)P(B_1 A_2)}{P(B_1)}$	$\frac{P(A_2)P(B_2 A_2)}{P(B_2)}$	$\frac{P(A_2)P(B_3 A_2)}{P(B_3)}$		$\frac{P(A_2)P(B_c A_2)}{P(B_c)}$	
		$P(B_1) =$	$P(B_2) =$	$P(B_3) =$		$P(B_c) =$	
Colu	umn Total	$P(A_1)P(B_1 A_1) +$	$P(A_1)P(B_2 A_1) +$	$P(A_1)P(B_3 A_1) +$	• • •	$P(A_1)P(B_c A_1) +$	1
		$P(A_2)P(B_1 A_2)$	$P(A_2)P(B_2 A_2)$	$P(A_2)P(B_3 A_2)$		$P(A_2)P(B_c A_2)$	

		B_1	B_2	B_3		B_c	Row Total
A_1	Cell prob	$P(A_1)P(B_1 A_1)$	$P(A_1)P(B_2 A_1)$	$P(A_1)P(B_3 A_1)$		$P(A_1)P(B_c A_1)$	$P(A_1)$
	Row prob	$P(B_1 A_1)$	$P(B_1 A_1)$	$P(B_3 A_1)$		$P(B_c A_1)$	
	Col prob	$\frac{P(A_1)P(B_1 A_1)}{P(B_1)}$	$\frac{P(A_1)P(B_2 A_1)}{P(B_2)}$	$\frac{P(A_1)P(B_3 A_1)}{P(B_3)}$		$\frac{P(A_1)P(B_c A_1)}{P(B_c)}$	
A_2	Cell prob	$P(A_2)P(B_1 A_2)$	$P(A_2)P(B_2 A_2)$	$P(A_2)P(B_3 A_2)$		$P(A_2)P(B_c A_2)$	$P(A_2)$
	Row prob	$P(B_1 A_2)$	$P(B_2 A_2)$	$P(B_3 A_2)$		$P(B_c A_2)$	
	Col prob	$\frac{P(A_2)P(B_1 A_2)}{P(B_1)}$	$\frac{P(A_2)P(B_2 A_2)}{P(B_2)}$	$\frac{P(A_2)P(B_3 A_2)}{P(B_3)}$		$\frac{P(A_2)P(B_c A_2)}{P(B_c)}$	
:		÷	:		·		
A_r	Cell prob	$P(A_r)P(B_1 A_r)$	$P(A_r)P(B_2 A_r)$	$P(A_r)P(B_3 A_r)$		$P(A_r)P(B_c A_r)$	$P(A_r)$
	Row prob	$P(B_1 A_r)$	$P(B_2 A_r)$	$P(B_3 A_r)$		$P(B_c A_r)$	
	Col prob	$\frac{P(A_r)P(B_1 A_r)}{P(B_1)}$	$\frac{P(A_r)P(B_2 A_r)}{P(B_2)}$	$\frac{P(A_r)P(B_3 A_r)}{P(B_3)}$		$\frac{P(A_r)P(B_c A_r)}{P(B_c)}$	
Colu	umn Total	$P(B_{1}) = P(A_{1})P(B_{1} A_{1}) + P(A_{2})P(B_{1} A_{2}) + \dots$	$P(B_2) = P(A_1)P(B_2 A_1) + P(A_2)P(B_2 A_2) + \dots$	$ \begin{array}{r} P(B_3) = \\ P(A_1)P(B_3 A_1) + \\ P(A_2)P(B_3 A_2) + \\ \dots \end{array} $		$P(B_c) =$ $P(A_1)P(B_c A_1) +$ $P(A_2)P(B_c A_2) +$ \cdots	1
		$P(A_r)P(B_1 A_r)$	$P(A_r)P(B_2 A_r)$	$P(A_r)P(B_3 A_r)$		$P(A_r)P(B_c A_r)$	

		B_1	B_2	B_3	•••	B_c	Row
A_1	Cell prob	$P(A_1)P(B_1 A_1)$	$P(A_1)P(B_2 A_1)$	$P(A_1)P(B_3 A_1)$		$P(A_1)P(B_c A_1)$	$P(A_1)$
	Row prob	$P(B_1 A_1)$	$P(B_1 A_1)$	$P(B_3 A_1)$	•••	$P(B_c A_1)$	
	Col prob	$\frac{P(A_1)P(B_1 A_1)}{P(B_1)}$	$\frac{P(A_1)P(B_2 A_1)}{P(B_2)}$	$\frac{P(A_1)P(B_3 A_1)}{P(B_3)}$		$\frac{P(A_1)P(B_c A_1)}{P(B_c)}$	
A_2	Cell prob	$P(A_2)P(B_1 A_2)$	$P(A_2)P(B_2 A_2)$	$P(A_2)P(B_3 A_2)$		$P(A_2)P(B_c A_2)$	$P(A_2)$
	Row prob	$P(B_1 A_2)$	$P(B_2 A_2)$	$P(B_3 A_2)$		$P(B_c A_2)$	
	Col prob	$\frac{P(A_2)P(B_1 A_2)}{P(B_1)}$	$\frac{P(A_2)P(B_2 A_2)}{P(B_2)}$	$\frac{P(A_2)P(B_3 A_2)}{P(B_3)}$		$\frac{P(A_2)P(B_c A_2)}{P(B_c)}$	
•			:		·	:	
A_r	Cell prob	$P(A_r)P(B_1 A_r)$	$P(A_r)P(B_2 A_r)$	$P(A_r)P(B_3 A_r)$		$P(A_r)P(B_c A_r)$	$P(A_r)$
	Row prob	$P(B_1 A_r)$	$P(B_2 A_r)$	$P(B_3 A_r)$	•••	$P(B_c A_r)$	
	Col prob	$\frac{P(A_r)P(B_1 A_r)}{P(B_1)}$	$\frac{P(A_r)P(B_2 A_r)}{P(B_2)}$	$\frac{P(A_r)P(B_3 A_r)}{P(B_3)}$		$\frac{P(A_r)P(B_c A_r)}{P(B_c)}$	
Colu	umn Total	$P(B_1) = \sum_{i=1}^r P(A_i)P(B_1 A_i)$	$P(B_2) = \sum_{i=1}^{r} P(A_i) P(B_2 A_i)$	$P(B_3) = \sum_{i=1}^r P(A_i)P(B_3 A_i)$		$P(B_c) = \sum_{i=1}^{r} P(A_i) P(B_c A_i)$	1

		B_1					
A_1	Cell prob	$P(A_1)P(B_1 A_1)$					
]	Row prob	$P(B_1 A_1)$					
(Col prob	$\frac{P(A_1)P(B_1 A_1)}{P(B_1)}$					
			$P(A_1)$	$P(B_1 A_1)$	P(A	$A_1)P(B_1 A_1)$	
Ba	aves	Rule: $P(A_1 $	$B_1) =$	$P[A_2]P[B_2 A_2$		PLA9 PLB A9	
	,		P	$P(B_1)$	$\sum_{i=1}^{n} I$	$P(A_i)P(B_1 $	$A_i)$
			$P(A_i)P(B_2 A)$			$P(A_r)P(B_r A_r)$	
				$P(B_3 A_r)$			
			$\frac{P(A_r)P(B_2 A_r)}{P(B_2)}$				
Colum	nn Total	$ P(B_1) = \\ \sum_{i=1}^{r} P(A_i) P(B_1 A_i) = $	$\frac{P(B_2)}{\sum_{i=1}^{i} P(A_i) P(B_2 A_i)}$				

		B_1					
A_1	Cell prob	$P(A_1)P(B_1 A_1)$					
	Row prob	$P(B_1 A_1)$					
	Col prob	$\frac{P(A_1)P(B_1 A_1)}{P(B_1)}$					
				$_{P(B_3 \mathbb{Z}_2)}$			
L	aw of	total probab	ility: $P(B_1$	$() = \sum P$	(A_i)	$P(B_1 A_i)$	
		▲ ·			(i)	-(-1)	
		$P(A_r)P(B_1 A_r)$		$i{=}1$			
		$P(B_1 A_r)$					
		$\frac{P(A_r)P(B_1 A_r)}{P(B_1)}$					
Colu	ımn Total	$ P(B_1) = \\ \sum_{i=1}^{r} P(A_i) P(B_1 A_i) $					

		B_1				
A_1	Cell prob	$P(A_1)P(B_1 A_1)$		$P(A_1)P(\mathbf{r} A_1)$		
	Row prob	$P(B_1 A_1)$	$\mathcal{D}^{(B)}$ $\mathcal{D}(\mathcal{D})$	$ \sum D(\Lambda) $	$D(D \mid A)$	
	Col prob	$rac{P(A_1)P(B_1 A_1)}{P(B_1)}$	$\Gamma(D_1$	$P(A_i) = \sum P(A_i)$	$T(D_1 A_i)$	
				$i{=}1$		
L	aw of	total probab	ility:			
		1				
		$P(A_r)P(B_1 A_r)$		$P(A_r)P(B_3 A_r \boldsymbol{\gamma})$		
		$P(B_1 A_r)$	$\mathcal{P}(B_2 A_n)$ $\mathcal{D}(1)$	$B_1) = \sum P(A$	$(1, \ell, R)$	
		$rac{P(A_r)P(B_1 A_r)}{P(B_1)}$	$\frac{P(A_{s})P(B_{2} A_{s})}{P(B_{2})}$	$J_1 - \sum I (F$	$\mathbf{n}_i \propto D_1$)	
Colu	ımn Total	$ P(B_1) = \\ \sum_{i=1}^{r} P(A_i) P(B_1 A_i) $		$i{=}1$		

pet		blue	green	red	Row Total
cat					
	Cell prob	P(cat & blue)	P(cat & green)	P(cat & red)	P(cat)
	Row prob	$P(\text{blue} \mid \text{cat})$	$P(\text{green} \mid \text{cat})$	$P(\mathrm{red} \mid \mathrm{cat})$	
	Col prob	$P(\text{cat} \mid \text{blue})$	$P(\text{cat} \mid \text{green})$	$P(\text{cat} \mid \text{red})$	
dog					
	Cell prob	P(dog & blue)	P(dog & green)	P(dog & red)	$P(\mathrm{dog})$
	Row prob	$P(\text{blue} \mid \text{dog})$	$P(\text{green} \mid \text{dog})$	$P(\mathrm{red}\mid\mathrm{dog})$	
	Col prob	$P(\text{dog} \mid \text{blue})$	$P(\text{dog} \mid \text{green})$	$P(\text{dog} \mid \text{red})$	
Colu	ımn Total	P(blue)	P(green)	P(red)	1

P(cat or green) = ?

pet	blue	green	red	Row Total
cat				
Cell prob	P(cat & blue)	P(cat & green)	P(cat & red)	P(cat)
Row prob	$P(\text{blue} \mid \text{cat})$	$P(\text{green} \mid \text{cat})$	$P(\text{red} \mid \text{cat})$	
Col prob	$P(\text{cat} \mid \text{blue})$	$P(\text{cat} \mid \text{green})$	$P(\text{cat} \mid \text{red})$	
dog				
Cell prob	P(dog & blue)	P(dog & green)	P(dog & red)	$P(\mathrm{dog})$
Row prob	$P(\text{blue} \mid \text{dog})$	$P(\text{green} \mid \text{dog})$	$P(\text{red} \mid \text{dog})$	
Col prob	$P(\text{dog} \mid \text{blue})$	$P(\text{dog} \mid \text{green})$	$P(\log \operatorname{red})$	
Column Total	P(blue)	P(green)	P(red)	1

P(cat or green) = ?

pet	blue	green	red	Row Total
cat				
Cell prob	P(cat & blue)	P(cat & green)	P(cat & red)	P(cat)
Row prob	$P(\text{blue} \mid \text{cat})$	$P(\text{green} \mid \text{cat})$	$P(\text{red} \mid \text{cat})$	
Col prob	$P(\text{cat} \mid \text{blue})$	$P(\text{cat} \mid \text{green})$	$P(\text{cat} \mid \text{red})$	
dog				
Cell prob	P(dog & blue)	P(dog & green)	P(dog & red)	P(dog)
Row prob	$P(\text{blue} \mid \text{dog})$	$P(\text{green} \mid \text{dog})$	$P(\text{red} \mid \text{dog})$	
Col prob	$P(\text{dog} \mid \text{blue})$	$P(\log \mid \text{green})$	$P(\text{dog} \mid \text{red})$	
Column Total	P(blue)	P(green)	P(red)	1

P(cat or green) = P(cat & blue) + P(cat & green) + P(cat & red) + P(dog & green)

pet		blue	green	red	Row Total
cat					
	Cell prob	P(cat & blue)	P(cat & green)	P(cat & red)	P(cat)
	Row prob	$P(\text{blue} \mid \text{cat})$	$P(\text{green} \mid \text{cat})$	$P(\mathrm{red} \mid \mathrm{cat})$	
	Col prob	$P(\text{cat} \mid \text{blue})$	$P(\text{cat} \mid \text{green})$	$P(\text{cat} \mid \text{red})$	
dog					
	Cell prob	P(dog & blue)	P(dog & green)	P(dog & red)	$P(\mathrm{dog})$
	Row prob	$P(\text{blue} \mid \text{dog})$	$P(\text{green} \mid \text{dog})$	$P(\text{red} \mid \text{dog})$	
	Col prob	$P(\text{dog} \mid \text{blue})$	$P(\text{dog} \mid \text{green})$	$P(\text{dog} \mid \text{red})$	
Colu	ımn Total	P(blue)	P(green)	P(red)	1

$$P(\text{cat or green}) = P(\text{cat}) + P(\text{green}) - P(\text{cat \& green})$$

pet	blue	green	red	Row Total
cat				
Cell prob	P(cat & blue)	P(cat & green)	P(cat & red)	P(cat)
Row prob	r (brue cat)	r (green cat)	r (reu cat)	
Col prob	$P(\text{cat} \mid \text{blue})$	$P(\text{cat} \mid \text{green})$	$P(\text{cat} \mid \text{red})$	
dog				
Cell prob	P(dog & blue)	P(dog & green)	P(dog & red)	$P(\mathrm{dog})$
Row prob	$P(\text{blue} \mid \text{dog})$	$P(\text{green} \mid \text{dog})$	$P(\text{red} \mid \text{dog})$	
Col prob	$P(\text{dog} \mid \text{blue})$	$P(\text{dog} \mid \text{green})$	$P(\log \text{red})$	
Column Total	P(blue)	P(green)	P(red)	1

NOT outcome probabilities

P(NOT blue) = ?

pet	blue	green	red	Row Total
cat				
Cell prob	P(cat & blue)	P(cat & green)	P(cat & red)	P(cat)
Row prob	$P(\text{blue} \mid \text{cat})$	$P(\text{green} \mid \text{cat})$	$P(\text{red} \mid \text{cat})$	
Col prob	$P(\text{cat} \mid \text{blue})$	$P(\text{cat} \mid \text{green})$	$P(\text{cat} \mid \text{red})$	
dog				
Cell prob	P(dog & blue)	P(dog & green)	P(dog & red)	$P(\mathrm{dog})$
Row prob	$P(\text{blue} \mid \text{dog})$	$P(\text{green} \mid \text{dog})$	$P(\text{red} \mid \text{dog})$	
Col prob	$P(\text{dog} \mid \text{blue})$	$P(\text{dog} \mid \text{green})$	$P(\text{dog} \mid \text{red})$	
Column Total	P(blue)	P(green)	P(red)	1

NOT outcome probabilities

$$P(\text{NOT blue}) = P(\text{green}) + P(\text{red})$$

pet	blue	green	red	Row Total
cat				
Cell prob	P(cat & blue)	P(cat & green)	P(cat & red)	P(cat)
Row prob	$P(\text{blue} \mid \text{cat})$	$P(\text{green} \mid \text{cat})$	$P(\text{red} \mid \text{cat})$	
Col prob	$P(\text{cat} \mid \text{blue})$	$P(\text{cat} \mid \text{green})$	$P(\text{cat} \mid \text{red})$	
dog				
Cell prob	P(dog & blue)	P(dog & green)	P(dog & red)	$P(\mathrm{dog})$
Row prob	$P(\text{blue} \mid \text{dog})$	$P(\text{green} \mid \text{dog})$	$P(\text{red} \mid \text{dog})$	
Col prob	$P(\text{dog} \mid \text{blue})$	$P(\log \mid \text{green})$	$P(\text{dog} \mid \text{red})$	
Column Total	P(blue)	P(green)	P(red)	1

NOT outcome probabilities

$$P(\text{NOT blue}) = 1 - P(\text{blue})$$

pet	blue	green	red	Row Total
cat				
Cell prob	P(cat & blue)	P(cat & green)	P(cat & red)	P(cat)
Row prob	$P(\text{blue} \mid \text{cat})$	$P(\text{green} \mid \text{cat})$	$P(\text{red} \mid \text{cat})$	
Col prob	$P(\text{cat} \mid \text{blue})$	$P(\text{cat} \mid \text{green})$	$P(\text{cat} \mid \text{red})$	
dog				
Cell prob	P(dog & blue)	P(dog & green)	P(dog & red)	$P(\mathrm{dog})$
Row prob	$P(\text{blue} \mid \text{dog})$	$P(\text{green} \mid \text{dog})$	$P(\text{red} \mid \text{dog})$	
Col prob	$P(\text{dog} \mid \text{blue})$	$P(\text{dog} \mid \text{green})$	$P(\log \operatorname{red})$	
Column Total	P(blue)	P(green)	P(red)	1

pet		blue	green	red	Row Total
cat					
	Cell prob	P(cat & blue)	P(cat & green)	P(cat & red)	P(cat)
	Row prob	$P(\text{blue} \mid \text{cat})$	$P(\text{green} \mid \text{cat})$	$P(\mathrm{red} \mid \mathrm{cat})$	
	Col prob	$P(\text{cat} \mid \text{blue})$	$P(\text{cat} \mid \text{green})$	$P(\text{cat} \mid \text{red})$	
dog					
	Cell prob	P(dog & blue)	P(dog & green)	P(dog & red)	$P(\mathrm{dog})$
	Row prob	$P(\text{blue} \mid \text{dog})$	$P(\text{green} \mid \text{dog})$	$P(\mathrm{red} \mid \mathrm{dog})$	
	Col prob	$P(\text{dog} \mid \text{blue})$	$P(\log \mid \text{green})$	$P(\log \mid \operatorname{red})$	
Colu	ımn Total	P(blue)	P(green)	P(red)	1

pet		blue	green	red	Row Total
cat					
	Cell prob	P(cat & blue) = ?	P(cat & green) = ?	P(cat & red) = ?	P(cat)
	Row prob	$P(\text{blue} \mid \text{cat}) = P(\text{blue})$	$P(\text{green} \mid \text{cat}) = P(\text{green})$	$P(\text{red} \mid \text{cat}) = P(\text{red})$	
	Col prob	$P(\text{cat} \mid \text{blue}) = P(\text{cat})$	$P(\text{cat} \mid \text{green}) = P(\text{cat})$	$P(\text{cat} \mid \text{red}) = P(\text{cat})$	
\log					
	Cell prob	P(dog & blue) = ?	P(dog & green) = ?	$P(\operatorname{dog} \& \operatorname{red}) = ?$	$P(\mathrm{dog})$
	Row prob	$P(\text{blue} \mid \text{dog}) = P(\text{blue})$	$P(\text{green} \mid \text{dog}) = P(\text{green})$	$P(\text{red} \mid \text{dog}) = P(\text{red})$	
	Col prob	$P(\log \mid blue) = P(\log)$	$P(\log \text{green}) = P(\log)$	$P(\log \operatorname{red}) = P(\log)$	
Colur	mn Total	P(blue)	P(green)	P(red)	1

pet		blue	green	red
cat				
	Cell prob	$P(\text{cat \& blue}) = \frac{P(\text{cat})P(\text{blue})}{P(\text{cat})}$	P(cat & green) = P(cat)P(green)	P(cat & red) = P(cat)P(r)
	Row prob	$P(\text{blue} \mid \text{cat}) = P(\text{blue})$	$P(\text{green} \mid \text{cat}) = P(\text{green})$	$P(\text{red} \mid \text{cat}) = P(\text{red})$
	Col prob	$P(\text{cat} \mid \text{blue}) = P(\text{cat})$	$P(\text{cat} \mid \text{green}) = P(\text{cat})$	$P(\text{cat} \mid \text{red}) = P(\text{cat})$
dog				
	Cell prob	$P(\operatorname{dog} \& \operatorname{blue}) = P(\operatorname{dog})P(\operatorname{blue})$	P(dog & green) = P(dog)P(green)	$P(\operatorname{dog} \& \operatorname{red}) = P(\operatorname{dog})P(\operatorname{red})$
	Row prob	$P(\text{blue} \mid \text{dog}) = P(\text{blue})$	$P(\text{green} \mid \text{dog}) = P(\text{green})$	$P(\text{red} \mid \text{dog}) = P(\text{red})$
	Col prob	$P(\log \mid blue) = P(\log)$	$P(\log \text{green}) = P(\log)$	$P(\log \operatorname{red}) = P(\log)$
Colu	ımn Total	P(blue)	P(green)	P(red)

This is independence

pet		blue	green	red	Row Total
cat					
	Cell prob	P(cat)P(blue)	P(cat)P(green)	P(cat)P(red)	P(cat)
	Row prob	P(blue)	P(green)	$P(\mathrm{red})$	
	Col prob	P(cat)	P(cat)	P(cat)	
dog					
	Cell prob	P(dog)P(blue)	P(dog)P(green)	P(dog)P(red)	$P(\mathrm{dog})$
	Row prob	P(blue)	P(green)	$P(\mathrm{red})$	
	Col prob	$P(\mathrm{dog})$	$P(\mathrm{dog})$	P(dog)	
Colu	ımn Total	P(blue)	P(green)	P(red)	1

This is independence

	pet	blue	green	red	Row Total
					D(aat)
All of	the infor	mation is	s in the ma	argins!	P(cat)
	Row prob	P(Dlue)	P(green)	0	
					$P(\mathrm{dog})$
					I (dog)
	Col prob	$P(\mathrm{dog})$	$P(\mathrm{dog})$		
	Column Total	P(blue)	P(green)	P(red)	1

This is independence

	pet	blue	green	red	Row Total	
All of	the infor	mation is	s in the m	aroinsl	P(cat)	
				argins.		
Cell probabilities can be calculated						
from the marginal probabilities.						
	Column Total	P(blue)	P(green)	P(red)	1	

Why do we care about independence?

Conditional probabilities are at the heart of predictions.

Independence of variables A & B ↓ no point in making a prediction of A from B

Practice Problems

HINT: USE THE TABLE OF CELL, ROW, COLUMN, & MARGINAL PROBABILITIES.

- 1. Create an empty table
- 2. Fill in the information provided in the question
- 3. Identify the requested probability
- 4. Use the rules of probability to fill-in the gaps in the table to calculate the probability in question

Q: If 44% of college students have access to Netflix, 35% have access to Hulu, and 20% have access to both, then what is the probability that a randomly selected student has either Hulu or Netflix?

Product	Apple OS	Windows OS		
Laptop	а	b	.80	
Desktop	С	.15	d	
	.60	е	f	

Suppose the table of probabilities described the computer type and operating system choices for the Vanderbilt student population.

Calculate •P(Apple OS | Laptop) •P(Laptop | Apple OS) •P(Laptop and Apple OS) **Q:** Is computer type and computer operating system independent in the population from the previous question?

Suppose three machines generate widgets with a defect rate of 0.1, 0.01, and 0.001, respectively. If the machines generate the same number of widgets, what is the probability that a randomly selected widget is defective.

Machines A, B, and C generate widgets with a defect rate of 0.1, 0.01, and 0.001, respectively. If machine A generates twice as many widgets as B, and machine B generates twice as many widgets as machine C, what is the probability that a randomly selected widget is defective.

Machines A, B, and C generate widgets with a defect rate of 0.1, 0.01, and 0.001, respectively. Machine A generates twice as many widgets as B, and machine B generates twice as many widgets as machine C. If a randomly selected widget is defective, what is the probability that the widget came from machine A?

Suppose there are 5 coins, 4 of which are fair and one with P(tails) = .25. A coin is randomly selected and flipped 3 times. Calculate the following:

- P(fair coin selected | flip sequence = TTT)
- P(2 heads in 3 flips | biased coin selected)