More Bayes, Law of Total Probability, and Independence

Practice problems at the end

```
df <- function(n) {
```

 S <- sample(c ("setosa", "versicolor", "virginica"), n, replace=TRUE)
 \(\mathrm{pc}<-.4 *(\mathrm{~S}==\) "setosa") + .5*(S=="versicolor") + . 2
 C <- c("purple", "pink") [rbinom(n,1,pc)+1]
 data.frame \((S=S, C=C)\)
 \}
 | | Species | | | |
| :--- | :---: | :---: | :---: | :---: |
| Color | Setosa | Versicolor | Virginica | Row Total |
| pink | | | | |
| Cell prob | $?$ | $?$ | $?$ | $?$ |
| Row prob | $?$ | $?$ | $?$ | |
| Col prob | $?$ | $?$ | $?$ | |
| purple | | | | |
| Cell prob | $?$ | $?$ | $?$ | $?$ |
| Row prob | $?$ | $?$ | $?$ | |
| Col prob | $?$ | $?$ | $?$ | |
| Column Total | $?$ | $?$ | $?$ | $?$ |

```
df <- function(n) {
```

 S <- sample(c ("setosa", "versicolor", "virginica"), n, replace=TRUE)
 \(\mathrm{pc}<-.4 *(\mathrm{~S}==\) "setosa") + .5*(S=="versicolor") + . 2
 C <- c("purple", "pink") [rbinom(n,1,pc)+1]
 data.frame \((S=S, C=C)\)
 \}
 | | Species | | | |
| :--- | :--- | :--- | :--- | :--- |
| Color | Setosa | Versicolor | Virginica | Row Total |
| pink | | | | |
| Cell prob
 Row prob
 Col prob | | | | |
| purple | | | | |
| Cell prob
 Row prob
 Col prob | | | | |
| Column Total | | | | |

Compare to simulation results

df1 <- df(1000000)

 gmodels: :CrossTable (df1\$C,df1\$S)From last time ...

pet	blue	green	red	Row Total
cat				
	Cell prob	$?$	$?$	$?$
	Row prob	0.2	0.5	$?$
	Col prob	$?$	$?$	$?$
dog				
	Cell prob	$?$	$?$	$?$
	Row prob	0.3	$?$	0.6
	Col prob	$?$	$?$	$?$
Column Total	$?$	$?$	$?$	$?$

Question: Is there enough information to fill in the rest of the table?

pet		blue	green	red	Row Total
cat					
	Cell prob	$?$	$?$	$?$	0.3
	Row prob	0.2	0.5	0.3	
	Col prob	$?$	$?$	$?$	
dog					
	Cell prob	$?$	$?$	$?$	0.7
	Row prob	0.3	0.1	0.6	
	Col prob	$?$	$?$	$?$	
Column Total	$?$	$?$	$?$	$?$	

pet		blue	green		Row Total
cat					
	Cell prob	0.3×0.2	0.3×0.5	0.3×0.3	0.3
	Row prob	0.2^{j}	0.5^{j}	0.3^{j}	
	Col prob	$?$	$?$	$?$	
dog					
	Cell prob	$?$	$?$	$?$	0.7
	Row prob	0.3	0.1	0.6	
	Col prob	$?$	$?$	$?$	
Column Total	$?$	$?$	$?$	$?$	

pet		blue	green	red	Row Total
cat					
	Cell prob	0.3×0.2	0.3×0.5	0.3×0.3	0.3
	Row prob	0.2	0.5	0.3	
	Col prob	$?$	$?$	$?$	
dog					
	Cell prob	0.7×0.3	0.7×0.1	0.7×0.6	0.7
	Row prob	0.3	0.1	0.6	
	Col prob	$?$	$?$	$?$	
Column Total	$?$	$?$	$?$	$?$	

pet		blue	green	red
cat				Row Total
	Cell prob	0.3×0.2	0.3×0.5	0.3×0.3
	Row prob	0.2	0.5	0.3
	Col prob	$?$	$?$	$?$
dog				
	Cell prob	0.7×0.3	0.7×0.1	0.7×0.6
	Row prob		0.1	0.6
	Col prob	$?$	$?$	$?$
Column Total	$0.3 \times 0.2+0.7 \times 0.3$	$0.3 \times 0.5+0.7 \times 0.1$	$0.3 \times 0.3+0.7 \times 0.6$	1

pet	blue	green	red	Row Total	
cat	Cell prob	0.3×0.2			0.3
	Row prob	0.2	0.3×0.5	0.3×0.3	0.3
	Col prob	$\frac{0.3 \times 0.2}{0.3 \times 0.2+0.7 \times 0.3}$	$\frac{0.3 \times 0.5}{0.3 \times 0.5+0.7 \times 0.1}$	$\frac{0.3 \times 0.3}{0.3 \times 0.3+0.7 \times 0.6}$	
dog				0.7×0.6	0.7
	Cell prob	0.7×0.3	0.7×0.1	0.6	
	Row prob	0.3	0.1	0.7×0.6	
	Col prob	$\overline{0.3 \times 0.2+0.3}$	$\overline{0.7 \times 0.3}$	$\overline{0.3 \times 0.5+0.7 \times 0.1}$	$\overline{0.3 \times 0.3+0.7 \times 0.6}$

Let's repeat the calculations, but this time let's use symbolic placeholders

This is the information we started with

pet	blue	green	red	Row Total	
cat	Cell prob				$P($ cat $)$
	Row prob	$P($ blue\|cat		$P($ blue \mid cat $)$	
	Col prob				
dog					
	Cell prob		$P($ green \mid dog $)$		
	Row prob	$P($ blue \mid dog $)$			1
	Col prob				
Column Total					

pet	blue	green	red	Row Total
cat Cell prob Row prob Col prob	$\begin{gathered} P(\text { cat }) P(\text { blue } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \end{gathered}$	$\begin{gathered} P(\text { cat }) P(\text { green } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \end{gathered}$	$\begin{gathered} P(\text { cat }) P(\text { red } \mid \text { cat }) \\ P(\text { red } \mid \text { cat }) \end{gathered}$	P (cat)
dog Cell prob Row prob Col prob	$P \text { (blue\|dog) }$	$P(\text { green } \mid \text { dog })$	$P(\mathrm{red} \mid \mathrm{dog})$	$P(\mathrm{dog})$
Column Total				1

pet	blue	green	red	Row Total
cat Cell prob Row prob Col prob	$\begin{gathered} P(\text { cat }) P(\text { blue } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \end{gathered}$	$\begin{gathered} P(\text { cat }) P \text { (green } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \end{gathered}$	$\begin{gathered} P(\text { cat }) P(\text { red } \mid \text { cat }) \\ P(\text { red } \mid \text { cat }) \end{gathered}$	P (cat)
dog Cell prob Row prob Col prob	$P(\operatorname{dog}) P(\text { blue } \mid \text { dog })$ $P \text { (blue\|dog) }$	$\begin{gathered} P(\operatorname{dog}) P(\text { green } \mid \operatorname{dog}) \\ P(\text { green } \mid \text { dog }) \end{gathered}$	$\begin{gathered} P(\operatorname{dog}) P(\text { red } \mid \mathrm{dog}) \\ P(\text { red } \mid \operatorname{dog}) \end{gathered}$	$P(\mathrm{dog})$
Column Total				1

pet	blue	green	red	Row Total
cat Cell prob Row prob Col prob	$\begin{gathered} P(\text { cat }) P(\text { blue } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \end{gathered}$	$\begin{gathered} P(\text { cat }) P(\text { green } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \end{gathered}$	$\begin{gathered} P(\text { cat }) P(\text { red } \mid \text { cat }) \\ P(\text { red } \mid \text { cat }) \end{gathered}$	P (cat)
dog Cell prob Row prob Col prob	$\begin{gathered} P(\operatorname{dog}) P(\text { blue } \mid \mathrm{dog}) \\ P(\text { blue } \mid \mathrm{dog}) \end{gathered}$	$\begin{gathered} P(\text { dog }) P(\text { green } \mid \text { dog }) \\ P(\text { green } \mid \text { dog }) \end{gathered}$	$P(\operatorname{dog}) P($ red $\mid \operatorname{dog})$ $P($ red \mid dog $)$	$P(\mathrm{dog})$
Column Total	$\begin{aligned} & P(\text { blue })= \\ & P(\text { cat }) P(\text { blue } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { blue } \mid \text { dog }) \\ & \hline \end{aligned}$	$\begin{aligned} & P(\text { green })= \\ & P(\text { cat }) P(\text { green } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { green } \mid \text { dog }) \\ & \hline \end{aligned}$	$\begin{aligned} & P(\text { red })= \\ & P(\text { cat }) P(\text { red } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { red } \mid \text { dog }) \\ & \hline \end{aligned}$	1

pet	blue	green	red	Row Total
Cell prob Row prob Col prob	$\begin{gathered} P(\text { cat }) P(\text { blue } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \\ \frac{P(\text { cat }) P(\text { blue } \mid \text { cat })}{P(\text { blue })} \end{gathered}$	$\begin{gathered} P(\text { cat }) P(\text { green } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \end{gathered}$	$\begin{gathered} P(\text { cat }) P(\text { red } \mid \text { cat }) \\ P(\text { red } \mid \text { cat }) \end{gathered}$	P (cat)
dog Cell prob Row prob Col prob	$\begin{gathered} P(\operatorname{dog}) P(\text { blue } \mid \mathrm{dog}) \\ P(\text { blue } \mid \text { dog }) \\ \frac{P(\mathrm{dog}) P(\text { blue } \mid \mathrm{dog})}{P(\text { blue })} \end{gathered}$	$\begin{gathered} P(\text { dog }) P(\text { green } \mid \text { dog }) \\ P(\text { green } \mid \text { dog }) \end{gathered}$	$P(\operatorname{dog}) P($ red $\mid \operatorname{dog})$ $P($ red \mid dog $)$	$P(\mathrm{dog})$
Column Total	$\begin{aligned} & P(\text { blue })= \\ & P(\text { cat }) P(\text { blue } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { blue } \mid \text { dog }) \\ & \hline \end{aligned}$	$\begin{aligned} & P(\text { green })= \\ & P(\text { cat }) P(\text { green } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { green } \mid \text { dog }) \end{aligned}$	$\begin{aligned} & P(\text { red })= \\ & P(\text { cat }) P(\text { red } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { red } \mid \text { dog }) \end{aligned}$	1

pet	blue	green	red	Row Total
Cell prob Row prob Col prob	$\begin{gathered} P(\text { cat }) P(\text { blue } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \\ \frac{P(\text { cat }) P(\text { blue } \mid \text { cat })}{P(\text { blue })} \end{gathered}$	$\begin{gathered} P(\text { cat }) P(\text { green } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \\ \frac{P(\text { cat }) P(\text { green } \mid \text { cat })}{P(\text { green })} \end{gathered}$	$\begin{gathered} P(\text { cat }) P(\text { red } \mid \text { cat }) \\ P(\text { red } \mid \text { cat }) \end{gathered}$	P (cat)
dog Cell prob Row prob Col prob	$\begin{gathered} P(\operatorname{dog}) P(\text { blue } \mid \mathrm{dog}) \\ P(\text { blue } \mid \mathrm{dog}) \\ \frac{P(\mathrm{dog}) P(\mathrm{blue} \mid \mathrm{dog})}{P(\text { blue })} \end{gathered}$	$\begin{gathered} P(\operatorname{dog}) P(\text { green } \mid \text { dog }) \\ P(\text { green } \mid \text { dog }) \\ \frac{P(\text { dog }) P(\text { green } \mid \text { dog })}{P(\text { green })} \end{gathered}$	$P(\operatorname{dog}) P($ red $\mid \operatorname{dog})$ $P($ red \mid dog $)$	$P(\mathrm{dog})$
Column Total	$\begin{aligned} & P(\text { blue })= \\ & P(\text { cat }) P(\text { blue } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { blue } \mid \text { dog }) \\ & \hline \end{aligned}$	$\begin{aligned} & P(\text { green })= \\ & P(\text { cat }) P(\text { green } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { green } \mid \text { dog }) \end{aligned}$	$\begin{aligned} & P(\text { red })= \\ & P(\text { cat }) P(\text { red } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { red } \mid \text { dog }) \end{aligned}$	1

pet	blue	green	red	Row Total
Cell prob Row prob Col prob	$\begin{gathered} P(\text { cat }) P(\text { blue } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \\ \frac{P(\text { cat }) P(\text { blue } \mid \text { cat })}{P(\text { blue })} \end{gathered}$	$\begin{gathered} P(\text { cat }) P(\text { green } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \\ \frac{P(\text { cat }) P(\text { green } \mid \text { cat })}{P(\text { green })} \end{gathered}$	$\begin{gathered} P(\text { cat }) P(\text { red } \mid \text { cat }) \\ P(\text { red } \mid \text { cat }) \\ \frac{P(\text { cat }) P(\text { red } \mid \text { cat })}{P(\text { red })} \end{gathered}$	P (cat)
dog Cell prob Row prob Col prob	$\begin{gathered} P(\operatorname{dog}) P(\text { blue } \mid \mathrm{dog}) \\ P(\text { blue } \mid \mathrm{dog}) \\ \frac{P(\mathrm{dog}) P(\mathrm{blue} \mid \mathrm{dog})}{P(\text { blue })} \end{gathered}$	$\begin{gathered} P(\operatorname{dog}) P(\text { green } \mid \text { dog }) \\ P(\text { green } \mid \text { dog }) \\ \frac{P(\text { dog }) P(\text { green } \mid \text { dog })}{P(\text { green })} \end{gathered}$	$\begin{gathered} P(\mathrm{dog}) P(\mathrm{red} \mid \mathrm{dog}) \\ P(\mathrm{red} \mid \mathrm{dog}) \\ \frac{P(\mathrm{dog}) P(\mathrm{red} \mid \mathrm{dog})}{P(\mathrm{red})} \end{gathered}$	$P(\mathrm{dog})$
Column Total	$\begin{aligned} & P(\text { blue })= \\ & P(\text { cat }) P(\text { blue } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { blue } \mid \text { dog }) \\ & \hline \end{aligned}$	$\begin{aligned} & P(\text { green })= \\ & P(\text { cat }) P(\text { green } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { green } \mid \text { dog }) \end{aligned}$	$\begin{aligned} & P(\text { red })= \\ & P(\text { cat }) P(\text { red } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { red } \mid \text { dog }) \end{aligned}$	1

pet	blue	
cat	Cell prob	$P($ cat $) P($ blue \mid cat $)=P($ cat \& blue $)$

pet	blue	green	red	Row Total
Cell prob Row prob Col prob	$\begin{gathered} P(\text { cat }) P(\text { blue } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \\ \frac{P(\text { cat }) P(\text { blue } \mid \text { cat })}{P(\text { blue })} \end{gathered}$	$\begin{gathered} P(\text { cat }) P(\text { green } \mid \text { cat }) \\ P(\text { blue } \mid \text { cat }) \\ \frac{P(\text { cat }) P(\text { green } \mid \text { cat })}{P(\text { green })} \end{gathered}$	$\begin{gathered} P(\text { cat }) P(\text { red } \mid \text { cat }) \\ P(\text { red } \mid \text { cat }) \\ \frac{P(\text { cat }) P(\text { red } \mid \text { cat })}{P(\text { red })} \end{gathered}$	P (cat)
dog Cell prob Row prob Col prob	$\begin{gathered} P(\operatorname{dog}) P(\text { blue } \mid \mathrm{dog}) \\ P(\text { blue } \mid \mathrm{dog}) \\ \frac{P(\mathrm{dog}) P(\mathrm{blue} \mid \mathrm{dog})}{P(\text { blue })} \end{gathered}$	$\begin{gathered} P(\operatorname{dog}) P(\text { green } \mid \text { dog }) \\ P(\text { green } \mid \text { dog }) \\ \frac{P(\text { dog }) P(\text { green } \mid \text { dog })}{P(\text { green })} \end{gathered}$	$\begin{gathered} P(\mathrm{dog}) P(\mathrm{red} \mid \mathrm{dog}) \\ P(\mathrm{red} \mid \mathrm{dog}) \\ \frac{P(\mathrm{dog}) P(\mathrm{red} \mid \mathrm{dog}}{P(\text { red })} \end{gathered}$	$P(\mathrm{dog})$
Column Total	$\begin{aligned} & P(\text { blue })= \\ & P(\text { cat }) P(\text { blue } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { blue } \mid \text { dog }) \\ & \hline \end{aligned}$	$\begin{aligned} & P(\text { green })= \\ & P(\text { cat }) P(\text { green } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { green } \mid \text { dog }) \end{aligned}$	$\begin{aligned} & P(\text { red })= \\ & P(\text { cat }) P(\text { red } \mid \text { cat })+ \\ & P(\text { dog }) P(\text { red } \mid \text { dog }) \end{aligned}$	1

		B_{1}	B_{2}	B_{3}	Row Total
A_{1}	Cell prob	$P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)$	$P\left(A_{1}\right) P\left(B_{2} \mid A_{1}\right)$	$P\left(A_{1}\right) P\left(B_{3} \mid A_{1}\right)$	$P\left(A_{1}\right)$
	Row prob	$P\left(B_{1} \mid A_{1}\right)$	$P\left(B_{1} \mid A_{1}\right)$	$P\left(B_{3} \mid A_{1}\right)$	
	Col prob	$\frac{P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)}{P\left(B_{1}\right)}$	$\frac{P\left(A_{1}\right) P\left(B_{2} \mid A_{1}\right)}{P\left(B_{2}\right)}$	$\frac{P\left(A_{1}\right) P\left(B_{3} \mid A_{1}\right)}{P\left(B_{3}\right)}$	
A_{2}	Cell prob	$P\left(A_{2}\right) P\left(B_{1} \mid A_{2}\right)$	$P\left(A_{2}\right) P\left(B_{2} \mid A_{2}\right)$	$P\left(A_{2}\right) P\left(B_{3} \mid A_{2}\right)$	$P\left(A_{2}\right)$
	Row prob	$P\left(B_{1} \mid A_{2}\right)$	$P\left(B_{2} \mid A_{2}\right)$	$P\left(B_{3} \mid A_{2}\right)$	
	Col prob	$\frac{P\left(A_{2}\right) P\left(B_{1} \mid A_{2}\right)}{P\left(B_{1}\right)}$	$\frac{P\left(A_{2}\right) P\left(B_{2} \mid A_{2}\right)}{P\left(B_{2}\right)}$	$\frac{P\left(A_{2}\right) P\left(B_{3} \mid A_{2}\right)}{P\left(B_{3}\right)}$	
Column Total	$P\left(B_{1}\right)=$	$P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)+$	$P\left(B_{2}\right)=$	$P\left(A_{1}\right) P\left(B_{2} \mid A_{1}\right)+$	$P\left(B_{3}\right)=P\left(B_{3} \mid A_{1}\right)+$
	$P\left(A_{2}\right) P\left(B_{1} \mid A_{2}\right)$	$P\left(A_{2}\right) P\left(B_{2} \mid A_{2}\right)$	$P\left(A_{2}\right) P\left(B_{3} \mid A_{2}\right)$	1	

	B_{1}	B_{2}	B_{3}	...	B_{c}	Row Total
A_{1} Cell prob Row prob Col prob	$\begin{gathered} P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right) \\ P\left(B_{1} \mid A_{1}\right) \\ \frac{P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)}{P\left(B_{1}\right)} \\ \hline \end{gathered}$	$\begin{gathered} P\left(A_{1}\right) P\left(B_{2} \mid A_{1}\right) \\ P\left(B_{1} \mid A_{1}\right) \\ \frac{P\left(A_{1}\right) P\left(B_{2} \mid A_{1}\right)}{P\left(B_{2}\right)} \\ \hline \end{gathered}$	$\begin{gathered} P\left(A_{1}\right) P\left(B_{3} \mid A_{1}\right) \\ P\left(B_{3} \mid A_{1}\right) \\ \frac{P\left(A_{1}\right) P\left(B_{3} \mid A_{1}\right)}{P\left(B_{3}\right)} \\ \hline \end{gathered}$		$\begin{gathered} P\left(A_{1}\right) P\left(B_{c} \mid A_{1}\right) \\ P\left(B_{c} \mid A_{1}\right) \\ \frac{P\left(A_{1}\right) P\left(B_{c} \mid A_{1}\right)}{P\left(B_{c}\right)} \\ \hline \end{gathered}$	$P\left(A_{1}\right)$
A_{2} Cell prob Row prob Col prob	$\begin{gathered} P\left(A_{2}\right) P\left(B_{1} \mid A_{2}\right) \\ P\left(B_{1} \mid A_{2}\right) \\ \frac{P\left(A_{2}\right) P\left(B_{1} \mid A_{2}\right)}{P\left(B_{1}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{2}\right) P\left(B_{2} \mid A_{2}\right) \\ P\left(B_{2} \mid A_{2}\right) \\ \frac{P\left(A_{2}\right) P\left(B_{2} \mid A_{2}\right)}{P\left(B_{2}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{2}\right) P\left(B_{3} \mid A_{2}\right) \\ P\left(B_{3} \mid A_{2}\right) \\ \frac{P\left(A_{2}\right) P\left(B_{3} \mid A_{2}\right)}{P\left(B_{3}\right)} \\ \hline \end{gathered}$		$\begin{gathered} P\left(A_{2}\right) P\left(B_{c} \mid A_{2}\right) \\ P\left(B_{c} \mid A_{2}\right) \\ \frac{P\left(A_{2}\right) P\left(B_{c} \mid A_{2}\right)}{P\left(B_{c}\right)} \end{gathered}$	$P\left(A_{2}\right)$
Column Total	$\begin{aligned} & P\left(B_{1}\right)= \\ & P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)+ \\ & P\left(A_{2}\right) P\left(B_{1} \mid A_{2}\right) \end{aligned}$	$\begin{aligned} & P\left(B_{2}\right)= \\ & P\left(A_{1}\right) P\left(B_{2} \mid A_{1}\right)+ \\ & P\left(A_{2}\right) P\left(B_{2} \mid A_{2}\right) \end{aligned}$	$\begin{aligned} & P\left(B_{3}\right)= \\ & P\left(A_{1}\right) P\left(B_{3} \mid A_{1}\right)+ \\ & P\left(A_{2}\right) P\left(B_{3} \mid A_{2}\right) \end{aligned}$	\ldots	$\begin{aligned} & P\left(B_{c}\right)= \\ & P\left(A_{1}\right) P\left(B_{c} \mid A_{1}\right)+ \\ & P\left(A_{2}\right) P\left(B_{c} \mid A_{2}\right) \end{aligned}$	1

	B_{1}	B_{2}	B_{3}	\ldots	B_{c}	Row Total
$\begin{array}{ll} \hline A_{1} & \\ & \text { Cell prob } \\ & \text { Row prob } \\ & \text { Col prob } \end{array}$	$\begin{gathered} P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right) \\ P\left(B_{1} \mid A_{1}\right) \\ \frac{P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)}{P\left(B_{1}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{1}\right) P\left(B_{2} \mid A_{1}\right) \\ P\left(B_{1} \mid A_{1}\right) \\ \frac{P\left(A_{1}\right) P\left(B_{2} \mid A_{1}\right)}{P\left(B_{2}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{1}\right) P\left(B_{3} \mid A_{1}\right) \\ P\left(B_{3} \mid A_{1}\right) \\ \frac{P\left(A_{1}\right) P\left(B_{3} \mid A_{1}\right)}{P\left(B_{3}\right)} \end{gathered}$	\ldots \ldots \ldots	$\begin{gathered} P\left(A_{1}\right) P\left(B_{c} \mid A_{1}\right) \\ P\left(B_{c} \mid A_{1}\right) \\ \frac{P\left(A_{1}\right) P\left(B_{c} \mid A_{1}\right)}{P\left(B_{c}\right)} \end{gathered}$	$P\left(A_{1}\right)$
$\begin{array}{ll} \hline A_{2} & \text { Cell prob } \\ & \text { Row prob } \\ & \text { Col prob } \end{array}$	$\begin{gathered} P\left(A_{2}\right) P\left(B_{1} \mid A_{2}\right) \\ P\left(B_{1} \mid A_{2}\right) \\ \frac{P\left(A_{2}\right) P\left(B_{1} \mid A_{2}\right)}{P\left(B_{1}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{2}\right) P\left(B_{2} \mid A_{2}\right) \\ P\left(B_{2} \mid A_{2}\right) \\ \frac{P\left(A_{2}\right) P\left(B_{2} \mid A_{2}\right)}{P\left(B_{2}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{2}\right) P\left(B_{3} \mid A_{2}\right) \\ P\left(B_{3} \mid A_{2}\right) \\ \frac{P\left(A_{2}\right) P\left(B_{3} \mid A_{2}\right)}{P\left(B_{3}\right)} \end{gathered}$		$\begin{gathered} P\left(A_{2}\right) P\left(B_{c} \mid A_{2}\right) \\ P\left(B_{c} \mid A_{2}\right) \\ \frac{P\left(A_{2}\right) P\left(B_{c} \mid A_{2}\right)}{P\left(B_{c}\right)} \end{gathered}$	$P\left(A_{2}\right)$
:	.	:	\vdots	\bigcirc	\vdots	
$\begin{array}{cc} \hline A_{r} & \\ & \text { Cell prob } \\ & \text { Row prob } \\ & \text { Col prob } \end{array}$	$\begin{gathered} P\left(A_{r}\right) P\left(B_{1} \mid A_{r}\right) \\ P\left(B_{1} \mid A_{r}\right) \\ \frac{P\left(A_{r}\right) P\left(B_{1} \mid A_{r}\right)}{P\left(B_{1}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{r}\right) P\left(B_{2} \mid A_{r}\right) \\ P\left(B_{2} \mid A_{r}\right) \\ \frac{P\left(A_{r}\right) P\left(B_{2} \mid A_{r}\right)}{P\left(B_{2}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{r}\right) P\left(B_{3} \mid A_{r}\right) \\ P\left(B_{3} \mid A_{r}\right) \\ \frac{P\left(A_{r}\right) P\left(B_{3} \mid A_{r}\right)}{P\left(B_{3}\right)} \end{gathered}$		$\begin{gathered} P\left(A_{r}\right) P\left(B_{c} \mid A_{r}\right) \\ P\left(B_{c} \mid A_{r}\right) \\ \frac{P\left(A_{r}\right) P\left(B_{c} \mid A_{r}\right)}{P\left(B_{c}\right)} \end{gathered}$	$P\left(A_{r}\right)$
Column Total	$\begin{aligned} & P\left(B_{1}\right)= \\ & P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)+ \\ & P\left(A_{2}\right) P\left(B_{1} \mid A_{2}\right)+ \\ & \ldots \\ & P\left(A_{r}\right) P\left(B_{1} \mid A_{r}\right) \end{aligned}$	$\begin{aligned} & P\left(B_{2}\right)= \\ & P\left(A_{1}\right) P\left(B_{2} \mid A_{1}\right)+ \\ & P\left(A_{2}\right) P\left(B_{2} \mid A_{2}\right)+ \\ & \ldots \\ & P\left(A_{r}\right) P\left(B_{2} \mid A_{r}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & P\left(B_{3}\right)= \\ & P\left(A_{1}\right) P\left(B_{3} \mid A_{1}\right)+ \\ & P\left(A_{2}\right) P\left(B_{3} \mid A_{2}\right)+ \\ & \ldots \\ & P\left(A_{r}\right) P\left(B_{3} \mid A_{r}\right) \\ & \hline \end{aligned}$	\ldots	$\begin{aligned} & P\left(B_{c}\right)= \\ & P\left(A_{1}\right) P\left(B_{c} \mid A_{1}\right)+ \\ & P\left(A_{2}\right) P\left(B_{c} \mid A_{2}\right)+ \\ & \ldots \\ & P\left(A_{r}\right) P\left(B_{c} \mid A_{r}\right) \\ & \hline \end{aligned}$	1

	B_{1}	B_{2}	B_{3}	\ldots	B_{c}	Row
$\begin{array}{ll} \hline A_{1} & \text { Cell prob } \\ & \text { Row prob } \\ & \text { Col prob } \end{array}$	$\begin{gathered} P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right) \\ P\left(B_{1} \mid A_{1}\right) \\ \frac{P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)}{P\left(B_{1}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{1}\right) P\left(B_{2} \mid A_{1}\right) \\ P\left(B_{1} \mid A_{1}\right) \\ \frac{P\left(A_{1}\right) P\left(B_{2} \mid A_{1}\right)}{P\left(B_{2}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{1}\right) P\left(B_{3} \mid A_{1}\right) \\ P\left(B_{3} \mid A_{1}\right) \\ \frac{P\left(A_{1}\right) P\left(B_{3} \mid A_{1}\right)}{P\left(B_{3}\right)} \end{gathered}$		$\begin{gathered} P\left(A_{1}\right) P\left(B_{c} \mid A_{1}\right) \\ P\left(B_{c} \mid A_{1}\right) \\ \frac{P\left(A_{1}\right) P\left(B_{c} \mid A_{1}\right)}{P\left(B_{c}\right)} \end{gathered}$	$P\left(A_{1}\right)$
A_{2} Cell prob Row prob Col prob	$\begin{gathered} P\left(A_{2}\right) P\left(B_{1} \mid A_{2}\right) \\ P\left(B_{1} \mid A_{2}\right) \\ \frac{P\left(A_{2}\right) P\left(B_{1} \mid A_{2}\right)}{P\left(B_{1}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{2}\right) P\left(B_{2} \mid A_{2}\right) \\ P\left(B_{2} \mid A_{2}\right) \\ \frac{P\left(A_{2}\right) P\left(B_{2} \mid A_{2}\right)}{P\left(B_{2}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{2}\right) P\left(B_{3} \mid A_{2}\right) \\ P\left(B_{3} \mid A_{2}\right) \\ \frac{P\left(A_{2}\right) P\left(B_{3} \mid A_{2}\right)}{P\left(B_{3}\right)} \end{gathered}$		$\begin{gathered} P\left(A_{2}\right) P\left(B_{c} \mid A_{2}\right) \\ P\left(B_{c} \mid A_{2}\right) \\ \frac{P\left(A_{2}\right) P\left(B_{c} \mid A_{2}\right)}{P\left(B_{c}\right)} \end{gathered}$	$P\left(A_{2}\right)$
\vdots	:	\vdots	\vdots	\because	:	
A_{r} Cell prob Row prob Col prob	$\begin{gathered} P\left(A_{r}\right) P\left(B_{1} \mid A_{r}\right) \\ P\left(B_{1} \mid A_{r}\right) \\ \frac{P\left(A_{r}\right) P\left(B_{1} \mid A_{r}\right)}{P\left(B_{1}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{r}\right) P\left(B_{2} \mid A_{r}\right) \\ P\left(B_{2} \mid A_{r}\right) \\ \frac{P\left(A_{r}\right) P\left(B_{2} \mid A_{r}\right)}{P\left(B_{2}\right)} \end{gathered}$	$\begin{gathered} P\left(A_{r}\right) P\left(B_{3} \mid A_{r}\right) \\ P\left(B_{3} \mid A_{r}\right) \\ \frac{P\left(A_{r}\right) P\left(B_{3} \mid A_{r}\right)}{P\left(B_{3}\right)} \end{gathered}$		$\begin{gathered} P\left(A_{r}\right) P\left(B_{c} \mid A_{r}\right) \\ P\left(B_{c} \mid A_{r}\right) \\ \frac{P\left(A_{r}\right) P\left(B_{c} \mid A_{r}\right)}{P\left(B_{c}\right)} \end{gathered}$	$P\left(A_{r}\right)$
Column Total	$\begin{aligned} & P\left(B_{1}\right)= \\ & \quad \sum_{i=1}^{r} P\left(A_{i}\right) P\left(B_{1} \mid A_{i}\right) \end{aligned}$	$\begin{aligned} & P\left(B_{2}\right)= \\ & \quad \sum_{i=1}^{r} P\left(A_{i}\right) P\left(B_{2} \mid A_{i}\right) \end{aligned}$	$\begin{aligned} & P\left(B_{3}\right)= \\ & \quad \sum_{i=1}^{r} P\left(A_{i}\right) P\left(B_{3} \mid A_{i}\right) \end{aligned}$	\ldots	$\begin{aligned} & P\left(B_{c}\right)= \\ & \quad \sum_{i=1}^{r} P\left(A_{i}\right) P\left(B_{c} \mid A_{i}\right) \end{aligned}$	1

		B_{1}
A_{1}	Cell prob	$P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)$
	Row prob	$P\left(B_{1} \mid A_{1}\right)$
	Col prob	$\frac{P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)}{P\left(B_{1}\right)}$

Bayes Rule: $\quad P\left(A_{1} \mid B_{1}\right)=\frac{P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)}{P\left(B_{1}\right)}=\frac{P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)}{\sum_{i=1}^{r} P\left(A_{i}\right) P\left(B_{1} \mid A_{i}\right)}$

Column Total	$\begin{array}{c}P\left(B_{1}\right)= \\ \sum_{i=1}^{r} P\left(A_{i}\right) P\left(B_{1} \mid A_{i}\right)\end{array}$

		B_{1}
A_{1}	Cell prob	$P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)$
	Row prob	$P\left(B_{1} \mid A_{1}\right)$
	Col prob	$\frac{P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)}{P\left(B_{1}\right)}$

Law of total probability: $P\left(B_{1}\right)=\sum_{i=1}^{r} P\left(A_{i}\right) P\left(B_{1} \mid A_{i}\right)$

$$
P\left(B_{1}\right)=\sum_{i=1}^{r} P\left(A_{i}\right) P\left(B_{1} \mid A_{i}\right)
$$

Law of total probability:

OR

$$
P\left(B_{1}\right)=\sum_{i=1}^{r} P\left(A_{i} \& B_{1}\right)
$$

Where are the OR probabilities?

pet	blue	green	red	Row Total
cat $\begin{array}{ll} \\ & \text { Cell prob } \\ & \text { Row prob } \\ & \text { Col prob }\end{array}$				P (cat)
	$P($ cat \& blue)	$P($ cat \& green $)$	$P($ cat \& red $)$	
	P (blue \| cat)	P (green \| cat)	$P($ red \| cat)	
	P (cat \| blue)	P (cat \| green)	$P($ cat \mid red $)$	
				$P(\mathrm{dog})$
$\begin{array}{cl}\text { dog } & \\ & \text { Cell prob } \\ & \text { Row prob } \\ & \text { Col prob }\end{array}$	$P($ dog \& blue $)$	$P($ dog \& green $)$	$P($ dog \& red $)$	
	P (blue \| dog)	$P($ green \mid dog $)$	P (red \| dog)	
	$P(\operatorname{dog} \mid$ blue $)$	$P($ dog \mid green $)$	$P(\mathrm{dog} \mid \mathrm{red})$	
Column Total	P (blue)	P (green)	P (red)	1

Where are the OR probabilities?

$P($ cat or green $)=?$

pet		blue	green	red	Row Total
cat					
	Cell prob	$P($ cat \& blue $)$	$P($ cat \& green $)$	$P($ cat \& red $)$	$P($ cat $)$
	Row prob	$P($ blue \| cat $)$	$P($ green \| cat $)$	$P($ red \| cat $)$	
	Col prob	$P($ cat \| blue $)$	$P($ cat \| green $)$	$P($ cat \| red $)$	
dog					
	Cell prob	$P($ dog \& blue $)$	$P($ dog \& green $)$	$P(\operatorname{dog} \&$ red $)$	$P(\operatorname{dog})$
	Row prob	$P($ blue \| dog $)$	$P($ green \| dog $)$	$P($ red \| dog $)$	
	Col prob	$P($ dog \| blue $)$	$P($ dog \| green $)$	$P(\operatorname{dog} \mid$ red $)$	
Column Total	P(blue $)$	$P($ green $)$	P(red $)$	1	

Where are the OR probabilities?

$P($ cat or green $)=$?

pet		blue	green	red	Row Total
cat					
	Cell prob	$P($ cat \& blue $)$	$P($ cat \& green $)$	$P($ cat \& red $)$	$P($ cat $)$
	Row prob	$P($ blue \mid cat $)$	$P($ green \| cat $)$	$P($ red \| cat $)$	
	Col prob	$P($ cat \| blue $)$	$P($ cat \| green $)$	$P($ cat \| red $)$	
dog					
	Cell prob	$P($ dog \& blue $)$	$P($ dog \& green $)$	$P(\operatorname{dog} \&$ red $)$	$P(\operatorname{dog})$
	Row prob	$P($ blue \| dog $)$	$P($ green \| dog $)$	$P($ red \| dog $)$	
	Col prob	$P(\operatorname{dog} \mid$ blue $)$	$P($ dog \| green $)$	$P(\operatorname{dog} \mid$ red $)$	
Column Total	$\mathrm{P}($ blue $)$	$\mathrm{P}($ green $)$	$\mathrm{P}($ red $)$	1	

Where are the OR probabilities?

$$
\begin{aligned}
& P(\text { cat or green })= \\
& P(\text { cat \& blue })+P(\text { cat \& green })+ \\
& P(\text { cat } \& \text { red })+P(\text { dog } \& \text { green })
\end{aligned}
$$

pet		blue	green	red	Row Total
cat					
	Cell prob	$P($ cat \& blue $)$	$P($ cat \& green $)$	$P($ cat \& red $)$	$P($ cat $)$
	Row prob	$P($ blue \| cat $)$	$P($ green \| cat $)$	$P($ red \| cat $)$	
	Col prob	$P($ cat \| blue $)$	$P($ cat \| green $)$	$P($ cat \| red $)$	
dog					
	Cell prob	$P($ dog \& blue $)$	$P($ dog \& green $)$	$P($ dog \& red $)$	$P(\operatorname{dog})$
	Row prob	$P($ blue \| dog $)$	$P($ green \| dog $)$	$P($ red \| dog $)$	
	Col prob	$P($ dog \| blue $)$	$P($ dog \| green $)$	$P(\operatorname{dog} \mid$ red $)$	
Column Total	$\mathrm{P}($ blue $)$	$\mathrm{P}($ green $)$	$\mathrm{P}($ red $)$	1	

Where are the OR probabilities?

$$
P(\text { cat or green })=P(\text { cat })+P(\text { green })-P(\text { cat } \& \text { green })
$$

pet	blue	green	red	Row Total
cat				
Cell prob	$P($ cat \& blue)	$P($ cat \& green)	$P($ cat \& red $)$	P (cat)
Row prob	r (biue \| cal)	r (green \| cal)	r (red \mid cal	
Col prob	$P($ cat \| blue)	$P($ cat \mid green $)$	$P($ cat \| red)	
dog				
Cell prob	$P($ dog \& blue $)$	$P($ dog \& green $)$	$P($ dog \& red $)$	$P(\mathrm{dog})$
Row prob	P (blue \| dog)	$P($ green \mid dog $)$	P (red \| dog)	
Col prob	$P($ dog \| blue $)$	$P(\operatorname{dog} \mid$ green $)$	$P(\operatorname{dog} \mid$ red $)$	
Column Total	P (blue)	P (green)	P(red)	1

NOT outcome probabilities

$P($ NOT blue $)=?$

pet		blue	green	red	Row Total
cat					
	Cell prob	$P($ cat \& blue $)$	$P($ cat \& green $)$	$P($ cat \& red $)$	$P($ cat $)$
	Row prob	$P($ blue \| cat $)$	$P($ green \| cat $)$	$P($ red \| cat $)$	
	Col prob	$P($ cat \| blue $)$	$P($ cat \| green $)$	$P($ cat \| red $)$	
dog					
	Cell prob	$P($ dog \& blue $)$	$P($ dog \& green $)$	$P(\operatorname{dog} \&$ red $)$	$P(\operatorname{dog})$
	Row prob	$P($ blue \| dog $)$	$P($ green \| dog $)$	$P($ red \| dog $)$	
	Col prob	$P(\operatorname{dog} \mid$ blue $)$	$P($ dog \| green $)$	$P(\operatorname{dog} \mid$ red $)$	
Column Total	$\mathrm{P}($ blue $)$	$\mathrm{P}($ green $)$	$\mathrm{P}($ red $)$	1	

NOT outcome probabilities

$$
P(\text { NOT blue })=P(\text { green })+P(\text { red })
$$

pet	blue	green	red	Row Total
cat				
Cell prob	P (cat \& blue)	$P($ cat \& green $)$	$P($ cat \& red $)$	P (cat)
Row prob	P (blue \| cat)	$P($ green \| cat)	$P($ red \mid cat $)$	
Col prob	P (cat \| blue)	$P($ cat \| green)	$P($ cat \mid red $)$	
dog				
Cell prob	$P($ dog \& blue $)$	$P($ dog \& green $)$	$P($ dog \& red $)$	$P(\mathrm{dog})$
Row prob	P (blue \| dog)	$P($ green \mid dog $)$	$P($ red \mid dog $)$	
Col prob	$P($ dog \mid blue $)$	$P(\operatorname{dog} \mid$ green $)$	$P(\operatorname{dog} \mid$ red $)$	
Column Total	P (blue)	P (green)	P (red)	1

NOT outcome probabilities

$$
P(\text { NOT blue })=1-P(\text { blue })
$$

pet		blue	green	red	Row Total
cat					
	Cell prob	$P($ cat \& blue $)$	$P($ cat \& green $)$	$P($ cat \& red $)$	$P($ cat $)$
	Row prob	$P($ blue \| cat $)$	$P($ green \| cat $)$	$P($ red \| cat $)$	
	Col prob	$P($ cat \| blue $)$	$P($ cat \| green $)$	$P($ cat \| red $)$	
dog					
	Cell prob	$P($ dog \& blue $)$	$P($ dog \& green $)$	$P($ dog \& red $)$	$P($ dog $)$
	Row prob	$P($ blue \| dog $)$	$P($ green \| dog $)$	$P($ red \| dog $)$	
	Col prob	$P(\operatorname{dog} \mid$ blue $)$	$P($ dog \| green $)$	$P(\operatorname{dog} \mid$ red $)$	
Column Total	$\mathrm{P}($ blue $)$	$\mathrm{P}($ green $)$	$\mathrm{P}($ red $)$	1	

What if the conditional probabilities contained no information?

pet		blue	green	red	Row Total
cat					
	Cell prob	$P($ cat \& blue $)$	$P($ cat \& green $)$	$P($ cat \& red $)$	$P($ cat $)$
	Row prob	$P($ blue \| cat $)$	$P($ green \| cat $)$	$P($ red \| cat $)$	
	Col prob	$P($ cat \| blue $)$	$P($ cat \| green $)$	$P($ cat \| red $)$	
dog					
	Cell prob	$P($ dog \& blue $)$	$P($ dog \& green $)$	$P($ dog \& red $)$	$P($ dog $)$
	Row prob	$P($ blue \| dog $)$	$P($ green \| dog $)$	$P($ red \| dog $)$	
	Col prob	$P(\operatorname{dog} \mid$ blue $)$	$P($ dog \| green $)$	$P(\operatorname{dog} \mid$ red $)$	
Column Total	$\mathrm{P}($ blue $)$	$\mathrm{P}($ green $)$	$\mathrm{P}($ red $)$	1	

What if the conditional probabilities contained no information?

pet		blue	green	red	Row Total
cat	Cell prob	$P($ cat \& blue $)=?$	$P($ cat \& green $)=?$	$P($ cat \& red $)=?$	$P($ cat $)$
	Row prob	$P($ blue \mid cat $)=P($ blue $)$	$P($ green \mid cat $)=P($ green $)$	$P($ red \mid cat $)=P($ red $)$	
	Col prob	$P($ cat \mid blue $)=P($ cat $)$	$P($ cat \mid green $)=P($ cat $)$	$P($ cat \mid red $)=P($ cat $)$	
dog	Cell prob	$P(\operatorname{dog} \&$ blue $)=?$	$P(\operatorname{dog} \&$ green $)=?$	$P(\operatorname{dog} \&$ red $)=?$	$P(\operatorname{dog})$
	Row prob	$P($ blue $\mid \operatorname{dog})=P($ blue $)$	$P($ green $\mid \operatorname{dog})=P($ green $)$	$P($ red $\mid \operatorname{dog})=P($ red $)$	
	Col prob	$P(\operatorname{dog} \mid$ blue $)=P(\operatorname{dog})$	$P(\operatorname{dog} \mid$ green $)=P(\operatorname{dog})$	$P(\operatorname{dog} \mid$ red $)=P(\operatorname{dog})$	
Column Total	$\mathrm{P}($ blue $)$	$\mathrm{P}($ green $)$	$\mathrm{P}($ red $)$	1	

What if the conditional probabilities contained no information?

pet	blue	green	red
cat Cell prob Row prob Col prob	$\begin{aligned} P(\text { cat \& blue }) & =P(\text { cat }) P(\text { blue }) \\ P(\text { blue } \mid \text { cat }) & =P(\text { blue }) \\ P(\text { cat } \mid \text { blue }) & =P(\text { cat }) \end{aligned}$	$\begin{aligned} P(\text { cat } \& \text { green }) & =P(\text { cat }) P(\text { green }) \\ P(\text { green } \mid \text { cat }) & =P(\text { green }) \\ P(\text { cat } \mid \text { green }) & =P(\text { cat }) \end{aligned}$	$\begin{aligned} P(\text { cat \& red }) & =P(\text { cat }) P(\mathrm{r} \\ P(\text { red } \mid \text { cat }) & =P(\text { red }) \\ P(\text { cat } \mid \text { red }) & =P(\text { cat }) \end{aligned}$
dog Cell prob Row prob Col prob	$\begin{aligned} P(\operatorname{dog} \& \text { blue }) & =P(\operatorname{dog}) P(\text { blue }) \\ P(\text { blue } \mid \text { dog }) & =P(\text { blue }) \\ P(\operatorname{dog} \mid \text { blue }) & =P(\operatorname{dog}) \end{aligned}$	$\begin{aligned} P(\text { dog } \& \text { green }) & =P(\operatorname{dog}) P(\text { green }) \\ P(\text { green } \mid \text { dog }) & =P(\text { green }) \\ P(\operatorname{dog} \mid \text { green }) & =P(\operatorname{dog}) \end{aligned}$	$\begin{aligned} P(\operatorname{dog} \& \text { red }) & =P(\operatorname{dog}) P(1 \\ P(\text { red } \mid \mathrm{dog}) & =P(\mathrm{red}) \\ P(\mathrm{dog} \mid \mathrm{red}) & =P(\mathrm{dog}) \end{aligned}$
Column Total	P (blue)	P (green)	P (red)

What if the conditional probabilities contained no information?

This is independence

pet		blue	green	red	Row Total
cat	Cell prob	$P($ cat $) P($ blue $)$	$P($ cat $) P($ green $)$	$P($ cat $) P($ red $)$	$P($ cat $)$
	Row prob	$P($ blue $)$	$P($ green $)$	$P($ red $)$	
	Col prob	$P($ cat $)$	$P($ cat $)$	$P($ cat $)$	
dog	Cell prob	$P($ dog $) P($ blue $)$	$P($ dog $) P($ green $)$	$P($ dog $) P($ red $)$	$P($ dog $)$
	Row prob	$P($ blue $)$	$P($ green $)$	$P($ red $)$	
	Col prob	$P($ dog $)$	$P($ dog $)$	$P($ dog $)$	
Column Total		P (blue)	$\mathrm{P}($ green $)$	$\mathrm{P}($ red $)$	1

What if the conditional probabilities contained no information?

This is independence

What if the conditional probabilities contained no information?

This is independence

Why do we care about independence?

Conditional probabilities are at the heart of predictions.

Independence of variables A \& B
no point in making a prediction of A from B

Practice Problems

HINT: USE THE TABLE OF CELL, ROW, COLUMN, \& MARGINAL PROBABILITIES.

1. Create an empty table
2. Fill in the information provided in the question
3. Identify the requested probability
4. Use the rules of probability to fill-in the gaps in the table to calculate the probability in question

If 44\% of college students have access to Netflix, 35% have access to Hulu, and 20% have access to both, then what is the probability that a randomly selected student has either Hulu or Netflix?

Product	Apple OS	Windows OS		Suppose the table of probabilities described the computer type and operating system choices for the Vanderbilt student population.						
Laptop	a	b	. 80							
Desktop	C	. 15	d							
	. 60	e	f							

> Calculate
> $\cdot P($ Apple OS | Laptop)
> $\cdot P($ Laptop | Apple OS)
> $\cdot P($ Laptop and Apple OS)

Q:
Is computer type and computer operating system independent in the population from the previous question?

Q:
Suppose three machines generate widgets with a defect rate of 0.1, 0.01 , and 0.001 , respectively. If the machines generate the same number of widgets, what is the probability that a randomly selected widget is defective.

Q:
Machines A, B, and C generate widgets with a defect rate of $0.1,0.01$, and 0.001 , respectively. If machine A generates twice as many widgets as B, and machine B generates twice as many widgets as machine C, what is the probability that a randomly selected widget is defective.

Machines A, B, and C generate widgets with a defect rate of $0.1,0.01$, and 0.001 , respectively. Machine A generates twice as many widgets as B, and machine B generates twice as many widgets as machine C. If a randomly selected widget is defective, what is the probability that the widget came from machine A?

Suppose there are 5 coins, 4 of which are fair and one with $\mathrm{P}($ tails $)=$.25. A coin is randomly selected and flipped 3 times. Calculate the following:

- $P($ fair coin selected \mid flip sequence $=T T T)$
- $P(2$ heads in 3 flips | biased coin selected)

