Frequency probabilities

Frequency Probability

- Long run proportion
- Repeatable process

Notebook/data.frame view

	Species	Color

1	virginica	purple
2	setosa	pink
3	versicolor	pink
\vdots	\vdots	\vdots
K	setosa	pink
K+1	versicolor	pink
\vdots	\vdots	\vdots

$$
\#(\text { pink })=\sum_{i=1}^{N} I\left(\text { Color }_{i}=" \text { pink" }\right)
$$

$$
P(\text { Color }=" \text { pink" })=\lim _{N \rightarrow \infty} \frac{\#(\text { pink })}{N}
$$

```
df <- function(n){
    S <- sample(c("setosa","versicolor", "virginica"), n, replace=TRUE)
    pc <- .4*(S=="setosa") + .5*(S=="versicolor") + . 2
    C <- c("purple","pink") [rbinom(n,1,pc)+1]
    data.frame(S = S, C = C)
}
```

> set.seed(1)
$>\mathrm{A}<-\mathrm{df}(50)$
> A \% >\% mutate (event = 1*(C=="pink")) \%>\% pull (event) \%>\% mean
[1] 0.44
> A <- rbind(A,df(500))
> A \%>\% mutate (event = 1*(C=="pink")) \%>\% pull (event) \%>\% mean
[1] 0.5163636
> A <- rbind (A,df(5000))
>A \% $\mathrm{A} \%$ mutate (event $=1 *(C==" p i n k ")$) $\%$ (pull (event) $\%$ \% mean
[1] 0.5037838
$>\mathrm{A}<-\mathrm{rbind}(\mathrm{A}, \mathrm{df}(5000000)$)
> A \%>\% mutate (event = 1*(C=="pink")) \%>\% pull(event) \%>\% mean
[1] 0.4997297

Joint events

- AND: events created by combining outcomes from two or more features with the AND operator
$\#($ setosa $\&$ pink $)=\sum_{i=1}^{N} I\left(\operatorname{Species}_{i}="{\left.\text { setosa" } \& \operatorname{Color}_{i}=" p i n k "\right) ~}_{\text {" }}=\right.$
$P($ Species $="$ setosa" $\&$ Color $="$ pink" $)=\lim _{N \rightarrow \infty} \frac{\#(\text { setosa \& pink })}{N}$

Joint events

- AND: events created by combining outcomes from two or more features with the AND operator
$\#($ setosa \mid pink $)=\sum_{i=1}^{N} I\left(\right.$ Species $_{i}="$ setosa" $\left.\mid \operatorname{Color}_{i}=" \operatorname{pink} "\right)$
$P($ Species $="$ setosa" \mid Color $="$ pink" $)=\lim _{N \rightarrow \infty} \frac{\#(\text { setosa } \mid \text { pink })}{N}$

```
set.seed(1)
df(500) %>%
    mutate(event = 1*(S=="setosa" & C == "pink")) %>%
    pull (event) %>%
    mean
df(500) %>%
    mutate(event = 1*(S=="setosa" | C == "pink")) %>%
    pull (event) %>%
    mean
```


Cross Tab

Pet Color Example

Cell frequencies

pet	blue	green	red	Row Total
cat	52	269	73	394
dog	299	290	17	606
Column Total	351	559	90	1000

Pet Color Example

Cell proportions

pet	blue	green	red	Row Total
cat	$\frac{52}{1000}$	$\frac{269}{1000}$	$\frac{73}{1000}$	$\frac{394}{1000}$
dog	$\frac{299}{1000}$	$\frac{290}{1000}$	$\frac{17}{1000}$	$\frac{606}{1000}$
Column Total	$\frac{351}{1000}$	$\frac{559}{1000}$	$\frac{90}{1000}$	$\frac{1000}{1000}$

Pet Color Example

$$
N=1000
$$

pet	blue	green	red	Row Total
cat	0.052	0.269	0.073	0.394
dog	0.299	0.290	0.017	0.606
Column Total	0.351	0.599	0.090	1

Cell frequency					
		Cell proportion			
pet blue gre en red Row Total cat 52 26 73 394 0.052 0.269 0.073 0.394 dog 299 290 17 606 0.299 0.290 0.017 0.606 Column Total 351 559 90 1000 0.351 0.599 0.090 1					

pet	blue	green	red	Row Total
Cell frequency	52	269	73	394
Cell proportion	0.052	0.269	0.073	0.394
Row proportion	$\frac{52}{394}$	$\frac{269}{394}$	73 394	
dog	299	290	17	606
	0.299	0.290	0.017	0.606
	$\frac{299}{606}$	$\frac{290}{606}$	$\frac{17}{606}$	
Column Total	351	559	90	1000
	0.351	0.599	0.090	1

pet	blue	green	red	Row Total
Cell frequency	52	269	73	394
Cell proportion	0.052	0.269	0.073	0.394
Row proportion	0.132	0.683	0.185	
	dog	299	290	17
	0.299	0.290	0.017	0.606
	0.493	0.479	0.028	
Column Total	351	559	90	1000
	0.351	0.599	0.090	1

pet	blue	green	red	Row Total
cat	52	269	73	394
What is the sum of row proportions?	0.052	0.269	0.073	0.394
	0.132	0.683	0.185	
	299	290	17	606
	0.299	0.290	0.017	0.606
	0.493	0.479	0.028	
Column Total	351	559	90	1000
	0.351	0.599	0.090	1

pet	blue	green	red	Row Total
Cell frequency	52	269	73	394
Cell proportion	0.052	0.269	0.073	0.394
Row proportion	0.132	0.683	0.185	
।	$\frac{52}{351}$	$\frac{269}{559}$	$\frac{73}{90}$	
Column proportion	299	290	17	606
dog	0.299	0.290	0.017	0.606
	0.493	0.479	0.028	
	$\frac{299}{351}$	$\frac{290}{559}$	$\frac{17}{90}$	
Column Total	351	559	90	1000

pet	blue	green	red	Row Total
cat	52	269	73	394
	0.052	0.269	0.073	0.394
	0.132	0.683	0.185	
	Sum?	$\frac{52}{351}$	$\frac{269}{559}$	$\frac{73}{90}$
dog	299	290	17	606
	0.299	0.290	0.017	0.606
	0.493	0.479	0.028	
	$\frac{299}{351}$	$\frac{290}{559}$	$\frac{17}{90}$	
Column Total	351	559	90	1000

| pet | blue | green | red | Row Total |
| :--- | :--- | :---: | :---: | :---: | :---: |
| cat | 52 | 269 | 73 | 394 |
| | 0.052 | 0.269 | 0.073 | 0.394 |
| Column proportions | 0.132 | 0.683 | 0.185 | |
| sum to 1 | $\frac{52}{351}$ | $\frac{269}{559}$ | $\frac{73}{90}$ | |
| dog | 299 | 290 | 17 | 606 |
| | 0.299 | 0.290 | 0.017 | 0.606 |
| | 0.493 | 0.479 | 0.028 | |
| | $\frac{299}{351}$ | $\frac{290}{559}$ | $\frac{17}{90}$ | |
| | 351 | 559 | 90 | 1000 |

pet		blue	green	red	Row Total
cat		52	269	73	394
	Cell proportion	0.052	0.269	0.073	0.394
	Row proportion	0.132	0.683	0.185	
	Col proportion	0.148	0.481	0.811	
dog		299	290	17	606
	0.299	0.290	0.017	0.606	
	0.493	0.479	0.028		
	0.852	0.519	0.189		
Column Total	351	559	90	1000	
	0.351	0.599	0.090	1	

\# Many different ways to \# generate cross tabs in R
xtabs(~pet+color, data = df1)
table(df1\$pet, df1\$color)
gmodels::CrossTable(
df1\$pet
, df1\$color
, prop.chisq = FALSE
)

Cell Contents

Total Observations in Table: 1000

Total Observations in Table: 100000

Cell Contents

Total Observations in Table: 10000000

Pet Color Example

$$
\text { limit as } N \rightarrow \infty
$$

pet	blue	green	red	Row Total
cat	0.0634621	0.2730758	0.0634621	0.4
dog	0.3	0.2863499	0.01365008	0.6
Column Total	0.3634621	0.5594257	0.07711218	1

limit as $N \rightarrow \infty$

pet	blue	green	red	Row Total	
cat	∞	∞	∞	∞	
Cell prob	P (cat \& blue)	$P($ cat \& green $)$	$P($ cat \& red)	P (cat)	
Row prob	P (blue \| cat)	P (green \\| cat)	$P($ red \| cat)		
Col prob	P (cat \| blue)	$P($ cat \| green)	$P($ cat \| red)		
dog	∞	∞	∞	∞	
Cell prob	$P($ dog \& blue $)$	$P(\operatorname{dog} \&$ green $)$	$P(\mathrm{dog} \& \mathrm{red})$	$P(\mathrm{dog})$	
Row prob	P (blue \| dog)	P (green \| dog)	$P($ red \| dog)		
Col prob	$P(\mathrm{dog} \mid$ blue $)$	$P(\mathrm{dog} \mid$ green $)$	$P(\mathrm{dog} \mid$ red $)$		
Column Total	$\begin{gathered} \infty \\ \mathrm{P} \text { (blue) } \end{gathered}$		$\begin{gathered} \infty \\ \mathrm{P} \text { (red) } \\ \hline \end{gathered}$	∞	

limit as $N \rightarrow \infty$

pet		blue	green	red	Row Total
cat					
	Cell prob	$P($ cat \& blue $)$	$P($ cat \& green $)$	$P($ cat \& red $)$	$P($ cat $)$
	Row prob	$P($ blue \| cat $)$	$P($ green \| cat $)$	$P($ red \| cat $)$	
	Col prob	$P($ cat \| blue $)$	$P($ cat \| green $)$	$P($ cat \| red $)$	
dog					
	Cell prob	$P($ dog \& blue $)$	$P($ dog \& green $)$	$P($ dog \& red $)$	$P($ dog $)$
	Row prob	$P($ blue \| dog $)$	$P($ green \| dog $)$	$P($ red \| dog $)$	
	Col prob	$P($ dog \| blue $)$	$P($ dog \| green $)$	$P(\operatorname{dog} \mid$ red $)$	
Column Total	P(blue $)$	$\mathrm{P}($ green $)$	$\mathrm{P}($ red $)$	1	

Marginal

Probability
limit as $N \rightarrow \infty$

pet	blue	green	red	Row Total
cat				
Cell prob	P (cat \& blue)	$P($ cat \& green)	P (cat \& red)	P (cat)
Row prob	P (blue \| cat)	P (green \| cat)	P (red \| cat)	
Col prob	P (cat \| blue)	P (cat \| green)	$P($ cat \| red)	
dog				
Cell prob	$P($ dog \& blue $)$	$P(\operatorname{dog} \&$ green $)$	$P(\operatorname{dog} \& \mathrm{red})$	$P(\mathrm{dog})$
Row prob	P (blue \| dog)	P (green \| dog)	P (red \| dog)	
Col prob	$P($ dog \| blue)	$P($ dog \| green $)$	$P(\mathrm{dog} \mid \mathrm{red})$	
Column Total	P (blue)	P (green)	P (red)	1

Marginal Probability

limit as $N \rightarrow \infty$

pet	blue	green	red	Row Total
cat			$\begin{gathered} P(\text { cat \& red }) \\ P(\text { red \| cat }) \\ P(\text { cat } \mid \not 又 d) \\ \hline \end{gathered}$	P (cat)
Cell prob	P (cat \& blue)	$P($ cat \& green $)$		
Row prob	P (blue \| cat)	P (green \| cat)		
Col prob	P (cat \| blue)	$P($ cat \| green)		
dog				$P(\mathrm{dog})$
Cell prob	$P($ dog \& blue $)$	$P(\operatorname{dog} \&$ green $)$	$P(\mathrm{~d} g$ \& red)	
Row prob	P (blue \| dog)	P (green \| dog)	(red \| dog)	
Col prob	$P($ dog \| blue)	$P($ dog \mid green $)$	$P(\operatorname{dog} \mid \mathrm{red})$	
Column Total	P (blue)	P (green)	P (red)	1

Cell Probability

limit as $N \rightarrow \infty$ Joint Probability

Marginal
Probability

Cell Probability

limit as $N \rightarrow \infty$ Joint Probability

Marginal
Probability

Conditional Probabilities

pet		blue	green	red	Row Total
cat					P (cat)
	Cell prob	P (cat \& blue)	$P($ cat \& green)	$P($ cat \& red)	
	Row prob	P (blue \| cat)	P (green \| cat)	P (red \| cat)	
	Col prob	P (cat \| blue)	P (cat \| green)	$P($ cat \mid red $)$	
dog					$P(\mathrm{dog})$
	Cell prob	$P($ dog \& blue $)$	$P($ dog \& green $)$	$P($ dog \& red $)$	
	Row prob	P (blue \| dog)	P (green \| dog)	P (red \| dog)	
	Col prob	$P(\mathrm{dog} \mid$ blue $)$	$P($ dog \| green $)$	$P(\mathrm{dog} \mid \mathrm{red})$	
Colu	mn Total	P (blue)	P (green)	P (red)	1

RULE: All probabilities are between 0 and 1

$$
0 \leq P \leq 1
$$

pet		blue	green	red	Row Total	
cat					P (cat)	
	Cell prob	P (cat \& blue)	$P($ cat \& green)	$P($ cat \& red $)$		
	Row prob	P (blue \| cat)	P (green \| cat)	P (red \| cat)		
	Col prob	P (cat \| blue)	$P($ cat \\| green)	$P($ cat \| red $)$		
dog					$P(\operatorname{dog})$	
	Cell prob	$P($ dog \& blue $)$	$P($ dog \& green $)$	$P($ dog \& red $)$		
	Row prob	P (blue \| dog)	P (green \| dog)	P (red \| dog)		
	Col prob	$P(\operatorname{dog} \mid$ blue $)$	$P(\operatorname{dog} \mid$ green $)$	$P($ dog \mid red $)$		
Column Total		P (blue)	P (green)	P(red)	1	

RULE: Probabilities of all possible outcomes sum to 1.

$$
\sum_{i=1}^{J} P_{i}=1
$$

$P($ cat $\&$ blue $)+P($ cat $\&$ green $)+P($ cat $\&$ red $)$
$+P($ dog $\&$ blue $)+P(\operatorname{dog} \&$ green $)+P(\operatorname{dog} \&$ red $)$

$$
P(\text { cat } \mid \text { blue })+P(\operatorname{dog} \mid \text { blue })=1
$$

$P($ blue $\mid \operatorname{dog})+P($ green $\mid \operatorname{dog})+P($ red $\mid \operatorname{dog})=1$

$$
P(\text { cat })+P(\mathrm{dog})=1
$$

Law of total probability: Cell probabilities on the same row sum to the marginal probability.
$P(\operatorname{dog} \&$ blue $)+P(\operatorname{dog} \&$ green $)+P(\operatorname{dog} \& r e d)=P(\operatorname{dog})$

pet		blue	green	red	Row Total
cat					
	Cell prob	$P($ cat \& blue $)$	$P($ cat \& green $)$	$P($ cat \& red $)$	$P($ cat $)$
	Row prob	$P($ blue \| cat $)$	$P($ green \| cat $)$	$P($ red \| cat $)$	
	Col prob	$P($ cat \| blue $)$	$P($ cat \| green $)$	$P($ cat \| red $)$	
dog					
	Cell prob	$P($ dog \& blue $)$	$P($ dog \& green $)$	$P($ dog \& red $)$	$P(\operatorname{dog})$
	Row prob	$P($ blue \| dog $)$	$P($ green \| dog $)$	$P($ red \| dog $)$	
	Col prob	$P($ dog \| blue $)$	$P($ dog \| green $)$	$P(\operatorname{dog} \mid$ red $)$	
Column Total	$\mathrm{P}($ blue $)$	$\mathrm{P}($ green $)$	$\mathrm{P}($ red $)$	1	

Law of total probability: Cell probabilities in the same column sum to the marginal probability.

$$
P(\text { cat } \& \text { green })+P(\text { dog } \& \text { green })=P(\text { green })
$$

pet	blue	green	red	Row Total	
cat					
	Cell prob	P (cat \& blue)	$P($ cat \& green $)$	$P($ cat \& red $)$	$? ? ?$
	Row prob	$? ? ?$	$? ? ?$	$? ? ?$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
dog					
	Cell prob	$P($ dog \& blue $)$	$? ? ?$	$P($ dog \& red $)$	$? ? ?$
	Row prob	$? ? ?$	$? ? ?$	$? ? ?$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
Column Total	$? ? ?$	$? ? ?$	$? ? ?$	$? ? ?$	

Question: Is there enough information to fill in the rest of the table?

pet		blue	green	red	Row Total
cat					
	Cell prob	0.2	0.1	0.1	$? ? ?$
	Row prob	$? ? ?$	$? ? ?$	$? ? ?$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
dog					
	Cell prob	0.1	$? ? ?$	0.3	$? ? ?$
	Row prob	$? ? ?$	$? ? ?$	$? ? ?$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
Column Total	$? ? ?$	$? ? ?$	$? ? ?$	$? ? ?$	

Question: Is there enough information to fill in the rest of the table?

pet		blue	green	red	Row Total
cat					
	Cell prob	0.2	0.1	0.1	$? ? ?$
	Row prob	$? ? ?$	$? ? ?$	$? ? ?$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
dog					
	Cell prob	0.1	$? ? ?$	0.3	$? ? ?$
	Row prob	$? ? ?$	$? ? ?$	$? ? ?$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
Column Total	???	$? ? ?$	$? ? ?$	1	

pet		blue	green	red	Row Total
cat					
	Cell prob	0.2	0.1	0.1	$? ? ?$
	Row prob	$? ? ?$	$? ? ?$	$? ? ?$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
dog					
	Cell prob	0.1	0.2	0.3	$? ? ?$
	Row prob	$? ? ?$	$? ? ?$	$? ? ?$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
Column Total	???	$? ? ?$	$? ? ?$	1	

pet		blue	green	red	Row Total
cat					
	Cell prob	0.2	0.1	0.1	$0.2+0.1+0.1=0.4$
	Row prob	$? ? ?$	$? ? ?$	$? ? ?$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
dog					
	Cell prob	0.1	0.2	0.3	$0.1+0.2+0.3=0.6$
	Row prob	$? ? ?$	$? ? ?$	$? ? ?$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
Column Total	$? ? ?$	$? ? ?$	$? ? ?$	1	

pet		blue	green	red	Row Total
cat					
	Cell prob	0.2	0.1	0.1	0.4
	Row prob	$? ? ?$	$? ? ?$	$? ? ?$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
dog					
	Cell prob	0.1	0.2	0.3	0.6
	Row prob	$? ? ?$	$? ? ?$	$? ? ?$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
Column Total	???	$? ? ?$	$? ? ?$	1	

pet		blue	green	red	Row Total
cat					
	Cell prob	0.2	0.1	0.1	0.4
	Row prob	$\frac{0.2}{0.4}$	$\frac{0.1}{0.4}$	$\frac{0.1}{0.4}$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
dog					
	Cell prob	0.1	0.2	0.3	0.6
	Row prob	$? ? ?$	$? ? ?$	$? ? ?$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
Column Total	$? ? ?$	$? ? ?$	$? ? ?$	1	

pet		blue	green	red	Row Total
cat				0.4	
	Cell prob	0.2	0.1	0.1	0.1
	Row prob	$\frac{0.2}{0.4}$	$\frac{0.1}{0.4}$	$\frac{0.1}{0.4}$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
dog					
	Cell prob	0.1	0.2	0.3	0.6
	Row prob	$\frac{0.1}{0.6}$	$\frac{0.2}{0.6}$	$\frac{0.3}{0.6}$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
Column Total	$? ? ?$	$? ? ?$	$? ? ?$	1	

pet	blue	green	red	Row Total	
cat	Cell prob	0.2	0.1	0.1	0.4
	Row prob	$\frac{0.2}{0.4}$	$\frac{0.1}{0.4}$	$\frac{0.1}{0.4}$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
dog					
	Cell prob	0.1	0.2	0.3	0.6
	Row prob	$\frac{0.1}{0.6}$	$\frac{0.2}{0.6}$	$\frac{0.3}{0.6}$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
Column Total	$0.2+0.1=0.3$	$0.1+0.2=0.3$	$0.1+0.3=0.4$	1	

pet		blue	green	red	Row Total
cat	Cell prob	0.2	0.1	0.1	0.4
	Row prob	$\frac{0.2}{0.4}$	$\frac{0.1}{0.4}$	$\frac{0.1}{0.4}$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
dog					
	Cell prob	0.1	0.2	0.3	0.6
	Row prob	$\frac{0.1}{0.6}$	$\frac{0.2}{0.6}$	$\frac{0.3}{0.6}$	
	Col prob	$? ? ?$	$? ? ?$	$? ? ?$	
Column Total	0.3	0.3	0.4	1	

pet		blue	green	red	Row Total
cat					
	Cell prob	0.2	0.1	0.1	0.4
	Row prob	$\frac{0.2}{0.4}$	$\frac{0.1}{0.4}$	$\frac{0.1}{0.4}$	
	Col prob	$\frac{0.2}{0.3}$		$? ? ?$	
dog					
	Cell prob	0.1	0.2	0.3	0.6
	Row prob	$\frac{0.1}{0.6}$	$\frac{0.2}{0.6}$	$\frac{0.3}{0.6}$	
	Col prob	$\frac{0.1}{0.3}$	$? ? ?$	$? ? ?$	
Column Total	0.3	0.3	0.4	1	

pet		blue	green	red	Row Total
cat					
	Cell prob	0.2	0.1	0.1	0.4
	Row prob	$\frac{0.2}{0.4}$	$\frac{0.1}{0.4}$	$\frac{0.1}{0.4}$	
	Col prob	$\frac{0.2}{0.3}$	$\frac{0.1}{0.3}$	$? ? ?$	
dog					
	Cell prob	0.1	0.2	0.3	0.6
	Row prob	$\frac{0.1}{0.6}$	$\frac{0.2}{0.6}$	$\frac{0.3}{0.6}$	
	Col prob	$\frac{0.1}{0.3}$	$\frac{0.2}{0.3}$	$? ? ?$	
Column Total	0.3	0.3	0.4	1	

pet		blue	green	red	Row Total
cat					
	Cell prob	0.2	0.1	0.1	0.4
	Row prob	$\frac{0.2}{0.4}$	$\frac{0.1}{0.4}$	$\frac{0.1}{0.4}$	
	Col prob	$\frac{0.2}{0.3}$	$\frac{0.1}{0.3}$	$\frac{0.1}{0.4}$	
dog					
	Cell prob	0.1	0.2	0.3	0.6
	Row prob	$\frac{0.1}{0.6}$	$\frac{0.2}{0.6}$	$\frac{0.3}{0.6}$	
	Col prob	$\frac{0.1}{0.3}$	$\frac{0.2}{0.3}$	$\frac{0.1}{0.4}$	
Column Total	0.3	0.3	0.4	1	

pet	blue	green	red	Row Total
cat				
Cell prob	???	???	???	0.3
Row prob	0.2	0.5	???	
Col prob	???	???	???	
dog				
Cell prob	???	???	???	???
Row prob	0.3	???	0.6	
Col prob	???	???	???	
Column Total	???	???	???	???

Question: Is there enough information to fill in the rest of the table?

